Agritrop
Accueil

Extension of companion modeling using classification learning

Torii Daisuke, Bousquet François, Ishida Toru. 2005. Extension of companion modeling using classification learning. Transactions of the Japanese Society for Artificial Intelligence, 20 (6) : 379-386.

Article de revue ; Article de revue sans comité de lecture
[img] Version publiée - Japonais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_528519.pdf

Télécharger (1MB)

Titre japonais : En japonais

Résumé : Companion Modeling is a methodology of refining initial models for understanding reality through a role-playing game (RPG) and a multi-agent simulation. In this research, we propose a novel agent model construction methodology in which classification learning is applied to the RPG log data in Companion Modeling. This methodology enables a systematic model construction that handles multi-parameters, independent of the modelers ability. There are three problems in applying classification learning to the RPG log data: 1) It is difficult to gather enough data for the number of features because the cost of gathering data is high. 2) Noise data can affect the learning results because the amount of data may be insufficient. 3) The learning results should be explained as a human decision making model and should be recognized by the expert as being the result that reflects reality. We realized an agent model construction system using the following two approaches: 1) Using a feature selection method, the feature subset that has the best prediction accuracy is identified. In this process, the important features chosen by the expert are always included. 2) The expert eliminates irrelevant features from the learning results after evaluating the learning model through a visualization of the results. Finally, using the RPG log data from the Companion Modeling of agricultural economics in northeastern Thailand, we confirm the capability of this methodology.

Classification Agris : U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Torii Daisuke, Kyoto University (JPN)
  • Bousquet François, CIRAD-TERA-UPR GREEN (THA) ORCID: 0000-0002-4552-3724
  • Ishida Toru, Kyoto University (JPN)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/528519/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2023-01-29 ]