Agritrop
Accueil

Multi-agent systems in epidemiology : A first step for computational biology in the study of vector-borne disease transmission

Roche Benjamin, Guégan Jean-François, Bousquet François. 2008. Multi-agent systems in epidemiology : A first step for computational biology in the study of vector-borne disease transmission. BMC Bioinformatics, 9 (435), 9 p.

Article de revue ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_547627.pdf

Télécharger (313kB) | Prévisualisation

Résumé : Background: Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems. Results: Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment. Conclusion: Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.

Mots-clés Agrovoc : modèle de simulation, modèle mathématique, vecteur de maladie, relation hôte pathogène, transmission des maladies, système d'information géographique, écosystème, épidémiologie

Mots-clés complémentaires : Système multiagents

Classification Agris : U10 - Informatique, mathématiques et statistiques
L73 - Maladies des animaux
L72 - Organismes nuisibles des animaux

Champ stratégique Cirad : Axe 4 (2005-2013) - Santé animale et maladies émergentes

Auteurs et affiliations

  • Roche Benjamin, CNRS (FRA)
  • Guégan Jean-François, CNRS (FRA)
  • Bousquet François, CIRAD-ES-UPR GREEN (FRA) ORCID: 0000-0002-4552-3724

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/547627/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-08 ]