Chagneau Pierrette, Mortier Frédéric, Picard Nicolas, Bacro Jean-Noël.
2008. Prediction of a multivariate spatial random field with continuous, count and ordianl outcomes.
In : GEOSTATS 2008 : 8th International Geostatistics Congress, Santiago, Chili, 1-5 December 2008. Eds by Julián M. Ortiz, Xavier Emery
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. document_547647.pdf Télécharger (584kB) | Prévisualisation |
Résumé : As most georeferenced data sets are multivariate and concern variables of different kinds, spatial mapping methods must be able to deal with such data. The main difficulties are the prediction of non-Gaussian variables and the dependence modelling between processes. The aim of this paper is to present a new approach that permits simultaneous modelling of Gaussian, count and ordinal spatial processes. We consider a hierarchical model implemented within a Bayesian framework. The method used for Gaussian and count variables is based on the generalized linear model. Ordinal variable is taken into account through a generalization of the ordinal probit model. We use the moving average approach of Ver Hoef and Barry to model the dependencies between the processes.
Mots-clés Agrovoc : modèle mathématique
Classification Agris : U10 - Informatique, mathématiques et statistiques
Auteurs et affiliations
- Chagneau Pierrette, CIRAD-ES-UPR Dynamique forestière (FRA)
- Mortier Frédéric, CIRAD-BIOS-UPR Génétique forestière (FRA)
- Picard Nicolas, CIRAD-ES-UPR Dynamique forestière (GAB)
- Bacro Jean-Noël
Autres liens de la publication
Source : Cirad - Agritrop (https://agritrop.cirad.fr/547647/)
[ Page générée et mise en cache le 2024-03-28 ]