Designing permanent sample plots by using a spatially hierarchical matrix population model

Chagneau Pierrette, Mortier Frédéric, Picard Nicolas. 2009. Designing permanent sample plots by using a spatially hierarchical matrix population model. Applied Statistics, 58 (3) : pp. 1-23.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (807kB)


Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Economie-gestion

Abstract : Designing permanent sample plots is a key issue in forestry where long-term data are required to assess the sustainability of forest logging. The data that are collected in permanent sample plots are used to set parameters in a population dynamics matrix model which in turn is used to predict stock recovery rates for each species. The sampling plan for permanent plots can be designed to estimate stock recovery rates with a required accuracy at a given confidence level, while minimizing installation costs. This can be formulated as a constrained optimization problem (one constraint for each species). The question then is to quantify sampling variability, i.e. the variability of model predictions that are generated by the distribution of parameter estimators. In this study, we address the question of sampling variability for a size-classified population matrix model in a hierarchical context where sample size is itself random and driven by a multivariate spatial point process. An approximate expression is given for the accuracy of the stock recovery rate estimator. This expression is the limit of the accuracy as the expectation of sample size tends to co. We extend this expression to the multispecies case. To a first approximation, interactions between species do not affect the accuracy of the stock recovery rate for each species. A sampling plan is designed using the data for three species in a tropical rainforest in French Guiana. The optimal sampling plan appears to be determined by the most constrained species. (Résumé d'auteur)

Mots-clés Agrovoc : forêt tropicale, Modèle mathématique, Dynamique des populations, peuplement forestier, Échantillonnage, Eperua falcata, Annonaceae, Caesalpinioideae

Mots-clés géographiques Agrovoc : Guyane française

Mots-clés complémentaires : Vouacapoua americana, Oxandra asbeckii

Classification Agris : U10 - Mathematical and statistical methods
F40 - Plant ecology
K01 - Forestry - General aspects

Champ stratégique Cirad : Hors axes (2005-2013)

Auteurs et affiliations

  • Chagneau Pierrette, CIRAD-FORET-UPR Dynamique forestière (FRA)
  • Mortier Frédéric, CIRAD-FORET-UPR Génétique forestière (FRA)
  • Picard Nicolas, CIRAD-FORET-UPR Dynamique forestière (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-12-25 ]