Agritrop
Accueil

Prediction of palm-tree ganoderma affection degree by reflectance spectroscopy: Proposed methodology

Dubertret Fabrice, Lelong Camille, Caliman Jean-Pierre. 2009. Prediction of palm-tree ganoderma affection degree by reflectance spectroscopy: Proposed methodology. Montpellier : CIRAD, 56 p.

Document technique et de recherche
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_553387.pdf

Télécharger (3MB) | Prévisualisation

Résumé : The aim of this study was thus to test the relevance of statistical methods to detect the variations in spectral signature of oil-palm trees correlated to Ganoderma disease, a fungus responsible of high loss of yield and trees in palm groves. The objective is too discriminate infected palm trees and to establish a ranking in the degree of infection. Some previous studies (Lanore, 2006; et Brégand, 2007) revealed that it is feasible, but the number of individuals was too small to lead to statistically reliable models; thus, it is still to confirm and validate. More especially, the present study focuses on the possibility of infected palm-tree discrimination in accordance to four sickness degrees: Healthy, Low, Medium and High infection. It will test this potential at several scales: the leaflet, the canopy, and by remote sensing.

Mots-clés Agrovoc : Ganoderma, spectrométrie, Elaeis guineensis

Mots-clés géographiques Agrovoc : Sumatra

Classification Agris : H20 - Maladies des plantes
U30 - Méthodes de recherche

Auteurs et affiliations

  • Dubertret Fabrice, Montpellier SupAgro (FRA)
  • Lelong Camille, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-4850-1010
  • Caliman Jean-Pierre, CIRAD-PERSYST-UPR Systèmes de pérennes (IDN)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/553387/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-27 ]