Agritrop
Accueil

Combining process-based models for future biomass assessment at landscape scale

Gaucherel Cédric, Griffon Sébastien, Misson Laurent, Houet Thomas. 2010. Combining process-based models for future biomass assessment at landscape scale. Landscape Ecology, 25 (2) : 201-215.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_556415.pdf

Télécharger (566kB)

Quartile : Q1, Sujet : GEOSCIENCES, MULTIDISCIPLINARY / Quartile : Q1, Sujet : GEOGRAPHY, PHYSICAL / Quartile : Q2, Sujet : ECOLOGY

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Résumé : We need an integrated assessment of the bioenergy production at landscape scale for at least three main reasons: (1) it is predictable that we will soon have landscapes dedicated to bioenergy productions; (2) a number of ''win-win'' solutions combining several dedicated energy crops have been suggested for a better use of local climate, soil mosaic and production systems and (3) ''well-to-wheels'' analyses for the entire bioenergy production chain urge us to optimize the life cycle of bioenergies at large scales. In this context, we argue that the new generation of landscape models allows in silico experiments to estimate bioenergy distributions (in space and time) that are helpful for this integrated assessment of the bioenergy production. The main objective of this paper was to develop a detailed modeling methodology for this purpose. We aimed at illustrating and discussing the use of mechanistic models and their possible association to simulate future distributions of fuel biomass. We applied two separated landscape models dedicated to human-driven agricultural and climatedriven forested neighboring patches. These models were combined in the same theoretical (i.e. virtual) landscape for present as well as future scenarios by associating realistic agricultural production scenarios and B2-IPCC climate scenarios depending on the bioenergy type (crop or forest) concerned in each landscape patch. We then estimated esthetical impacts of our simulations by using 3D visualizations and a quantitative ''depth'' index to rank them. Results first showed that the transport cost at landscape scale was not correlated to the total biomass production, mainly due to landscape configuration constraints. Secondly, averaged index values of the four simulations were conditioned by agricultural practices, while temporal trends were conditioned by gradual climate changes. Thirdly, the most realistic simulated landscape combining intensive agricultural practices and climate change with atmospheric CO2 concentration increase corresponded to the lowest and unwanted bioenergy conversion inefficiency (the biomass production ratio over 100 years divided by the averaged transport cost) and to the most open landscape. Managing land use and land cover changes at landscape scale is probably one of the most powerful ways to mitigate negative (or magnify positive) effects of climate and human decisions on overall biomass productions.

Mots-clés Agrovoc : modélisation environnementale, paysage, biomasse, bioénergie, forêt mélangée sempervirente, terre agricole

Mots-clés géographiques Agrovoc : Bretagne, Provence-Alpes-Côte d'Azur, France

Classification Agris : U10 - Informatique, mathématiques et statistiques
P05 - Ressources énergétiques et leur gestion
B10 - Géographie

Champ stratégique Cirad : Axe 2 (2005-2013) - Biomasse énergie et sociétés du sud

Auteurs et affiliations

  • Gaucherel Cédric, INRA (FRA)
  • Griffon Sébastien, CIRAD-BIOS-UMR AMAP (FRA)
  • Misson Laurent, CNRS (FRA)
  • Houet Thomas, CNRS (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/556415/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-19 ]