Chagneau Pierrette, Mortier Frédéric, Picard Nicolas, Braco Jean-noël. 2011. A hierarchical bayesian model for spatial prediction of multivariate non-gaussian random fields. Biometrics, 67 (1) : 97-105.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. document_559948.pdf Télécharger (242kB) |
Quartile : Q1, Sujet : STATISTICS & PROBABILITY / Quartile : Q2, Sujet : BIOLOGY / Quartile : Q2, Sujet : MATHEMATICAL & COMPUTATIONAL BIOLOGY
Résumé : As most georeferenced data sets are multivariate and concern variables of different types, spatial mapping methods must be able to deal with such data. The main difficulties are the prediction of non-Gaussian variables and the modeling of the dependence between processes. The aim of this article is to present a new hierarchical Bayesian approach that permits simultaneous modeling of dependent Gaussian, count, and ordinal spatial fields. This approach is based on spatial generalized linear mixed models. We use a moving average approach to model the spatial dependence between the processes. The method is first validated through a simulation study. We show that the multivariate model has better predictive abilities than the univariate one. Then the multivariate spatial hierarchical model is applied to a real data set collected in French Guiana to predict topsoil patterns.
Mots-clés Agrovoc : modèle mathématique, cartographie, terre arable, sciences du sol
Mots-clés géographiques Agrovoc : Guyane française, France
Classification Agris : U10 - Informatique, mathématiques et statistiques
P31 - Levés et cartographie des sols
P11 - Drainage
Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés
Auteurs et affiliations
- Chagneau Pierrette, CIRAD-ES-UPR BSef (FRA)
- Mortier Frédéric, CIRAD-ES-UPR BSef (FRA)
- Picard Nicolas, CIRAD-ES-UPR BSef (GAB)
- Braco Jean-noël
Autres liens de la publication
Source : Cirad - Agritrop (https://agritrop.cirad.fr/559948/)
[ Page générée et mise en cache le 2024-12-04 ]