Agritrop
Home

Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression

Allario Thierry, Brumos Javier, Colmenero Jose M., Tadeo Francisco, Froelicher Yann, Talon Manuel, Navarro Luis, Ollitrault Patrick, Morillon Raphaël. 2011. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of Experimental Botany, 62 (8) : pp. 2507-2519. Plant and Animal Genomes Conference. 19, San Diego, États-Unis, 15 January 2011/19 January 2011.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_560033.pdf

Télécharger (942kB)

Quartile : Q1, Sujet : PLANT SCIENCES

Abstract : Very little is known about the molecular origin of the large phenotypic differentiation between genotypes arising from somatic chromosome set doubling and their diploid parents. In this study, the anatomy and physiology of diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia Osbeck) seedlings has been characterized. Growth of 2x was more vigorous than 4x although leaves, stems, and roots of 4x plants were thicker and contained larger cells than 2x that may have a large impact on cell-to-cell water exchanges. Leaf water content was higher in 4x than in 2x. Leaf transcriptome expression using a citrus microarray containing 21 081 genes revealed that the number of genes differentially expressed in both genotypes was less than 1% and the maximum rate of gene expression change within a 2-fold range. Six up-regulated genes in 4x were targeted to validate microarray results by real-time reverse transcription-PCR. Five of these genes were apparently involved in the response to water deficit, suggesting that, in control conditions, the genome expression of citrus autotetraploids may act in a similar way to diploids under water-deficit stress condition. The sixth up-regulated gene which codes for a histone may also play an important role in regulating the transcription of growth processes. These results show that the large phenotypic differentiation in 4x Rangpur lime compared with 2x is not associated with large changes in genome expression. This suggests that, in 4x Rangpur lime, subtle changes in gene expression may be at the origin of the phenotypic differentiation of 4x citrus when compared with 2x. (Résumé d'auteur)

Mots-clés Agrovoc : Citrus, Expression des gènes, Polyploïdie, Tétraploïdie

Mots-clés géographiques Agrovoc : Espagne

Mots-clés complémentaires : Citrus limonia, Autotétraploïde

Classification Agris : F30 - Plant genetics and breeding
F62 - Plant physiology - Growth and development
F50 - Plant structure

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Allario Thierry, IVIA (ESP)
  • Brumos Javier, IVIA (ESP)
  • Colmenero Jose M., IVIA (ESP)
  • Tadeo Francisco, IVIA (ESP)
  • Froelicher Yann, CIRAD-BIOS-UMR AGAP (FRA)
  • Talon Manuel, IVIA (ESP)
  • Navarro Luis, IVIA (ESP)
  • Ollitrault Patrick, CIRAD-BIOS-UMR AGAP (ESP) ORCID: 0000-0002-9456-5517
  • Morillon Raphaël, CIRAD-BIOS-UMR AGAP (ESP)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/560033/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-02-14 ]