Agritrop
Accueil

Transcript profiling of crown rootless 1 mutant stem base reveals new elements associated with crown root development in rice

Coudert Yoan, Bes Martine, Thi Van Anh Le, Pré Martial, Guiderdoni Emmanuel, Gantet Pascal. 2011. Transcript profiling of crown rootless 1 mutant stem base reveals new elements associated with crown root development in rice. BMC Genomics, 12 (387), 12 p.

Article de revue ; Article de revue à facteur d'impact Revue en libre accès total
[img] Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_561187.pdf

Télécharger (3MB)

Quartile : Q1, Sujet : BIOTECHNOLOGY & APPLIED MICROBIOLOGY / Quartile : Q1, Sujet : GENETICS & HEREDITY

Résumé : Background: In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOBdomain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results: To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and upregulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion: Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM, GTE4 and MAP, require CRL1 to be induced by auxin suggesting that they are likely directly regulated by CRL1. These genes have a function related to polarized cell growth, cell cycle regulation or chromatin remodelling. This suggests that these genes are controlled by CRL1 and involved in CR initiation in rice.

Mots-clés Agrovoc : Oryza sativa, système racinaire

Classification Agris : F30 - Génétique et amélioration des plantes
F62 - Physiologie végétale - Croissance et développement

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Coudert Yoan, CIRAD-BIOS-UMR DAP (FRA)
  • Bes Martine, CIRAD-BIOS-UMR AGAP (FRA)
  • Thi Van Anh Le, UM2 (FRA)
  • Pré Martial, UM2 (FRA)
  • Guiderdoni Emmanuel, CIRAD-BIOS-UMR AGAP (FRA)
  • Gantet Pascal, UM2 (VNM)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/561187/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]