Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites

Migliavacca Mirco, Reichstein Markus, Richardson Andrew D., Colombo Roberto, Sutton Mark A., Lasslop Gitta, Tomelleri Enrico, Wohlfahrt Julie, Carvalhais Nuno, Cescatti Alessandro, Mahecha Miguel D., Montagnani Leonardo, Papale Dario, Zaehle Sönke, Arain M. Altaf, Arneth Almur, Black Andrew, Carrara Arnaud, Dore Sabina, Gianelle Damiano, Helfters Carole, Hollinger David Y., Kutsch Werner L., Lafleur Peter M., Nouvellon Yann, Rebmann Corinna, Da Rocha Humberto R., Rodeghiero Mirco, Roupsard Olivier, Sebastia Maria-Teresa, Seufert Guenther, Soussana Jean-François, Van der Molen Michiel K.. 2011. Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Global Change Biology, 17 (1) : pp. 390-409.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (489kB)

Quartile : Outlier, Sujet : ENVIRONMENTAL SCIENCES / Quartile : Outlier, Sujet : BIODIVERSITY CONSERVATION / Quartile : Outlier, Sujet : ECOLOGY

Abstract : In this study we examined ecosystem respiration (RECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of RECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of RECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of RECO. The maximum seasonal leaf area index (LAIMAX) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature Tref515 1C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r250.52, Po0.001, n5104) even within each PFT. Besides LAIMAX, we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (Ndepo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAIMAX) which performed well in predicting the spatio-temporal variability of RECO, explaining 470% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands. (Résumé d'auteur)

Mots-clés Agrovoc : Modélisation environnementale, Savane, Forêt, Prairie, Respiration, Écosystème, Facteur climatique, Indice de surface foliaire, Productivité, Changement climatique, Matière organique du sol, Zone méditerranéenne, Zone tempérée, Zone froide, Zone tropicale, Carbone

Mots-clés géographiques Agrovoc : Monde

Classification Agris : U10 - Computer science, mathematics and statistics
F40 - Plant ecology
000 - Other themes
P33 - Soil chemistry and physics

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Migliavacca Mirco, Max Planck Institut für Biogeochemie (DEU)
  • Reichstein Markus, Max Planck Institut für Biogeochemie (DEU)
  • Richardson Andrew D., Harvard University (USA)
  • Colombo Roberto, University of Milan (ITA)
  • Sutton Mark A., Centre for Ecology and Hydrology (GBR)
  • Lasslop Gitta, Max Planck Institut für Biogeochemie (DEU)
  • Tomelleri Enrico, Max Planck Institut für Biogeochemie (DEU)
  • Wohlfahrt Julie, Institut fuer Okologie der universitat (AUT)
  • Carvalhais Nuno, Max Planck Institut für Biogeochemie (DEU)
  • Cescatti Alessandro, IES (ITA)
  • Mahecha Miguel D., Max Planck Institut für Biogeochemie (DEU)
  • Montagnani Leonardo, Forest Services and Agency for the Environment (ITA)
  • Papale Dario, Università degli studi della Tuscia (ITA)
  • Zaehle Sönke, Max Planck Institut für Biogeochemie (DEU)
  • Arain M. Altaf, McMaster University (CAN)
  • Arneth Almur, Lund University (SWE)
  • Black Andrew, University of British Columbia (CAN)
  • Carrara Arnaud, CEAM [Fundación Centro de Estudios Ambientales del Mediterráneo] (ESP)
  • Dore Sabina, Arizona State University (USA)
  • Gianelle Damiano, IASMA (ITA)
  • Helfters Carole, Centre for Ecology and Hydrology (GBR)
  • Hollinger David Y., USDA (USA)
  • Kutsch Werner L., Max Planck Institut für Biogeochemie (DEU)
  • Lafleur Peter M., Trent University (CAN)
  • Nouvellon Yann, CIRAD-PERSYST-UPR Ecosystèmes de plantations (BRA)
  • Rebmann Corinna, Max Planck Institut für Biogeochemie (DEU)
  • Da Rocha Humberto R., Universidade de São Paulo (BRA)
  • Rodeghiero Mirco, IASMA (ITA)
  • Roupsard Olivier, CIRAD-PERSYST-UPR Ecosystèmes de plantations (CRI)
  • Sebastia Maria-Teresa, University of Lleida (ESP)
  • Seufert Guenther, IES (ITA)
  • Soussana Jean-François, INRA (FRA)
  • Van der Molen Michiel K., Vrije Universiteit (NLD)

Autres liens de la publication

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-03 ]