Picard Nicolas, Bar-Hen Avner. 2012. A criterion based on the mahalanobis distance for cluster analysis with subsampling. Journal of Classification, 9 (1) : 23-49.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. document_563873.pdf Télécharger (369kB) |
Quartile : Q3, Sujet : MATHEMATICS, INTERDISCIPLINARY APPLICATIONS / Quartile : Q4, Sujet : PSYCHOLOGY, MATHEMATICAL
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie
Résumé : A two-level data set consists of entities of a higher level (say populations), each one being composed of several units of the lower level (say individuals). Observations are made at the individual level, whereas population characteristics are aggregated from individual data. Cluster analysis with subsampling of populations is a cluster analysis based on individual data that aims at clustering populations rather than individuals. In this article, we extend existing optimality criteria for cluster analysis with subsampling of populations to deal with situations where population characteristics are not the mean of individual data. A new criterion that depends on the Mahalanobis distance is also defined. The criteria are compared using simulated examples and an ecological data set of tree species in a tropical rain forest.
Mots-clés Agrovoc : modèle mathématique, échantillonnage, peuplement forestier, classification, espèce
Mots-clés géographiques Agrovoc : Guyane française, France
Classification Agris : U10 - Informatique, mathématiques et statistiques
K01 - Foresterie - Considérations générales
Champ stratégique Cirad : Hors axes (2005-2013)
Auteurs et affiliations
- Picard Nicolas, CIRAD-ES-UPR BSef (GAB)
- Bar-Hen Avner, Université René Descartes (FRA)
Autres liens de la publication
Source : Cirad - Agritrop (https://agritrop.cirad.fr/563873/)
[ Page générée et mise en cache le 2024-07-09 ]