Agritrop
Accueil

Forest degradation estimation using remote sensing: a case study on Central African Republic

Gond Valéry, Bourbier Lucas, Cornu Guillaume. 2011. Forest degradation estimation using remote sensing: a case study on Central African Republic. In : Research priorities in tropical silviculture: towards new paradigms ? : IUFRO International Conference, Montpellier, France, 15-18 November 2011, Abstracts. Sist Plinio (ed.). IUFRO, CIRAD, CIFOR, ECOFOR. Vienne : IUFRO, 67. IUFRO International Conference on Research Priorities in Tropical Silviculture, Montpellier, France, 15 Novembre 2011/18 Novembre 2011.

Communication sans actes
[img] Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_564742.pdf

Télécharger (191kB)
[img] Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_564742.pdf

Télécharger (1MB)

Matériel d'accompagnement : 1 diaporama (17 vues)

Résumé : Human activities within tropical rain forests provoke perturbations and degradation. The capacity to measure the extent of these damages is essential for calculating carbon emissions under the REDD+ process. Remote sensing is a powerful tool to provide such information (logging, mining, infrastructure building). Various techniques to identify and quantify forest degradation have been used so far. One step further is to link in-time degradation and past-time degradation to document the recovery of ecosystems after logging. For this, we propose a processing chain adapted to Landsat and Spot imageries. Post-processing is devoted to extract degradation information using specific algorithms. A spatial index, sized to low resolution radiometer, is implemented to render the actual and past degree of degradation. It is then related to continental land cover maps to get insight in the actual state of particular forest categories. This tool is developed in the framework of the CoForChange program (http://www.coforchange.eu/project) which general objective is to predict changes in forest and tree species distribution in the Congo Basin due to global change and to elaborate decision-making tools. The presentation is focused on an example in real time and in real size. It covers all the moist forest of Central African Republic at a yearly time-scale during ten years of Landsat images archive.

Classification Agris : K01 - Foresterie - Considérations générales
U30 - Méthodes de recherche
P01 - Conservation de la nature et ressources foncières
U10 - Informatique, mathématiques et statistiques

Auteurs et affiliations

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/564742/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2022-03-31 ]