Gorretta Nathalie, Rabatel Gilles, Fiorio Christophe, Lelong Camille, Roger Jean-Michel. 2012. An iterative hyperspectral image segmentation method using a cross analysis of spectral and spatial information. Chemometrics and Intelligent Laboratory Systems, 117 (1) : 213-223. African-European Conference on Chemometrics. 1, Rabat, Maroc, 20 Septembre 2010/24 Septembre 2010.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. document_566128.pdf Télécharger (3MB) |
Quartile : Q1, Sujet : STATISTICS & PROBABILITY / Quartile : Q1, Sujet : INSTRUMENTS & INSTRUMENTATION / Quartile : Q1, Sujet : MATHEMATICS, INTERDISCIPLINARY APPLICATIONS / Quartile : Q1, Sujet : COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE / Quartile : Q1, Sujet : AUTOMATION & CONTROL SYSTEMS / Quartile : Q2, Sujet : CHEMISTRY, ANALYTICAL
Résumé : The combined use of available spectral and spatial information for object detection, which has been promoted by the advent of high spatial resolution hyperspectral imaging devices, now seems essential for many application domains (characterization of urban areas, agriculture, etc.). The proposed approach called "butterfly" is focusing on this issue and realizes a spectral-spatial cooperation scheme to split images into spectrally homogeneous adjoining regions (segmentation). The main idea of the method is to extract spatial and spectral features simultaneously. For achieving this goal, it establishes some correspondences between the spatial and the spectral concepts, in order to run alternately in the two spaces. Thus, the notion of partition specific to the spatial space is associated with the notion of classes in the spectral space. In parallel, the concept of latent variable owing to the spectral space is associated with the notion of image plans in the spatial space. The proposed scheme is therefore to update the features specific to each space (i.e. partition, classes, latent variables and plans) by the knowledge of the features in the complementary space and this recursively. An implementation of this generic scheme using a split and merge strategy is given. Experimental results are presented for a synthetic image and two real hyperspectral images with different spatial resolution. Results on the set of real images are also compared to those obtained with conventional approaches.
Mots-clés Agrovoc : méthodologie, analyse d'image, imagerie, spectrométrie, distribution spatiale
Classification Agris : U30 - Méthodes de recherche
000 - Autres thèmes
Champ stratégique Cirad : Hors axes (2005-2013)
Auteurs et affiliations
- Gorretta Nathalie, IRSTEA (FRA)
- Rabatel Gilles, IRSTEA (FRA)
- Fiorio Christophe, LIRMM (FRA)
- Lelong Camille, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0002-4850-1010
- Roger Jean-Michel, IRSTEA (FRA)
Autres liens de la publication
Source : Cirad - Agritrop (https://agritrop.cirad.fr/566128/)
[ Page générée et mise en cache le 2024-06-03 ]