Agritrop
Accueil

Automatic characterization of the cell organization in light microscopic images of wood: application to the identification of the cell file

Brunel Guilhem, Borianne Philippe, Subsol Gérard, Jaeger Marc, Caraglio Yves. 2012. Automatic characterization of the cell organization in light microscopic images of wood: application to the identification of the cell file. In : Plant growth modeling, simulation, visualization and applications. Proceedings PMA12 : The Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Shanghai, China, 31 October-3 November 2012. Kang Meng Zhen (ed.), Dumont Yves (ed.), Guo Yan (ed.). Piscataway : IEEE, 58-65. ISBN 978-1-4673-0068-1 International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA12). 4, Shanghai, Chine, 31 Octobre 2012/3 Novembre 2012.

Communication avec actes
[img] Version publiée - Anglais
Accès réservé aux agents Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_566317.pdf

Télécharger (676kB)

Résumé : Automated analysis of wood anatomical sections is o f great interest in understanding the growth and development o f plants. In this paper, we propose a novel method to characterize the cell organization in light microscopic wood section images. It aims to identify automatically the cell file in a context of mass treatment. The originality of the proposed method is our cell classification process. Unlike many supervised methods, our method is self conditioned, based on a decision tree which thresholds are automatically evaluated according to specific biological characteristics of each image. In order to evaluate the performances of the proposed system and allow the certification of the cell line detection, we introduced indices of quality characterizing the accuracy o f results and parameters of these results. Those are related to topological and geometrical characters of the cell file at both global and local scales. Moreover, we propose an index of certainty for selective results exploitation in further statistical studies. The proposed method was is implemented as a plugin for ImageJ. Tests hold on various wood section well contrasted images show good results in terms of cell file detection and process speed.

Classification Agris : U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
K50 - Technologie des produits forestiers
U30 - Méthodes de recherche

Auteurs et affiliations

  • Brunel Guilhem, UM2 (FRA)
  • Borianne Philippe, CIRAD-BIOS-UMR AMAP (FRA)
  • Subsol Gérard, CNRS (FRA)
  • Jaeger Marc, CIRAD-BIOS-UMR AMAP (FRA)
  • Caraglio Yves, CIRAD-BIOS-UMR AMAP (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/566317/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2022-03-30 ]