Agritrop
Accueil

Cluster analysis for two-level data sets: Classifying tree species from individual measurements

Picard Nicolas, Bar-Hen Avner. 2013. Cluster analysis for two-level data sets: Classifying tree species from individual measurements. Ecological Informatics, 15 : 1-7.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_568059.pdf

Télécharger (339kB)

Quartile : Q2, Sujet : ECOLOGY

Résumé : Two-level data sets consist of higher level (say population) traits computed from lower level (say individual) observations. Cluster analysis for two-level data sets aims at classifying populations using individual observations. Most existing techniques to classify populations in two-level data sets actually operate on population traits (e.g. the k-means algorithm), thus disregarding the within-population individual variability. In this study, the k-means algorithm was compared with a recently developed classification method that accounts for within-population variability. Populations were tree species in a tropical rain forest in French Guiana, and individual observations were tree diameters and diameter growth rates. Tree species were classified according to either their diameter and growth rate, or to their asymptotic diameter distribution as predicted by an Usher matrix population model. In both cases, the k-means algorithm and the two-level classification method defined species clusters that were significantly related according to the Rand index. Nevertheless, clusters showed increasing differences between the two methods as the within-population individual variability increased. Whereas the k-means algorithm produced equally-sized spherical clusters, the two-level classification method adapted the size and shape of clusters to the individual within-population variability. Taking account of individual variability to classify populations in ecology may thus be important, albeit rarely done.

Mots-clés Agrovoc : forêt tropicale humide, Cecropia obtusifolia, Inga, modèle mathématique, méthode statistique, classification, diamètre, croissance, biométrie, écologie, distribution géographique, analyse de variance

Mots-clés géographiques Agrovoc : Guyane française, France

Mots-clés complémentaires : Algorithme, Variabilite, Dicorynia guianensis, Vouacapoua americana, Swartzia, Vismia guianensis, Jacaranda copaia, Qualea rosea

Classification Agris : F40 - Écologie végétale
U10 - Informatique, mathématiques et statistiques
F70 - Taxonomie végétale et phytogéographie
K01 - Foresterie - Considérations générales

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Picard Nicolas, CIRAD-ES-UPR BSef (GAB)
  • Bar-Hen Avner, Université René Descartes (FRA)

Source : Cirad - Agritrop (https://agritrop.cirad.fr/568059/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]