Agritrop
Accueil

A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution

Boudon Frédéric, Chopard Jérôme, Ali Olivier, Gilles Benjamin, Hamant Olivier, Boudaoud Arezki, Traas Jan, Godin Christophe. 2015. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Computational Biology, 11 (1):e1003950, 16 p.

Article de revue ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_574812.pdf

Télécharger (1MB) | Prévisualisation

Url - autres données associées : https://gforge.inria.fr/frs/download.php/file/33843/sofatissue.tgz.

Quartile : Outlier, Sujet : MATHEMATICAL & COMPUTATIONAL BIOLOGY / Quartile : Q1, Sujet : BIOCHEMICAL RESEARCH METHODS

Résumé : The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.

Mots-clés Agrovoc : morphogénèse, propriété mécanique, modèle de simulation, paroi cellulaire

Classification Agris : U10 - Informatique, mathématiques et statistiques
F62 - Physiologie végétale - Croissance et développement
F50 - Anatomie et morphologie des plantes

Champ stratégique Cirad : Hors axes (2014-2018)

Auteurs et affiliations

  • Boudon Frédéric, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-9636-3102
  • Chopard Jérôme, INRIA (FRA)
  • Ali Olivier, ENS Lyon (FRA)
  • Gilles Benjamin, UM2 (FRA)
  • Hamant Olivier, ENS Lyon (FRA)
  • Boudaoud Arezki, ENS Lyon (FRA)
  • Traas Jan, ENS Lyon (FRA)
  • Godin Christophe, INRIA (FRA)

Source : Cirad - Agritrop (https://agritrop.cirad.fr/574812/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-27 ]