Agritrop
Accueil

Long-term mineral fertiliser use and maize residue incorporation do not compensate for carbon and nutrient losses from a Ferralsol under continuous maize–cotton cropping

Kintché Kokou, Guibert Hervé, Sogbédji J., Levêque Jean, Bonfoh Bassirou, Tittonell Pablo. 2015. Long-term mineral fertiliser use and maize residue incorporation do not compensate for carbon and nutrient losses from a Ferralsol under continuous maize–cotton cropping. Field Crops Research, 184 : 192-200.

Article de revue ; Article de revue à facteur d'impact
[img] Version Online first - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
577386.pdf

Télécharger (1MB) | Demander une copie
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
577386_version_editee.pdf

Télécharger (1MB) | Demander une copie

Quartile : Q1, Sujet : AGRONOMY

Résumé : It has been repeatedly argued that mineral fertiliser application combined with in situ retention of crop residue biomass can sustain long-term productivity of West African soils. Using 20-year experimental data from southern Togo, a biannual rainfall area, we analysed the effect of two rates of mineral NPK fertiliser application to maize–cotton rotation on the long-term dynamics of soil C and nutrient contents, as compared with two control treatments. Mineral fertiliser treatments consisted of application to both maize (first season) and cotton (second season) the research-recommended NPK rates (Fertiliser-RR) and 1.5 times these rates (Fertiliser-1.5 RR). Control treatments consisted of cropping maize and cotton without fertiliser use (No-Fertiliser) and of double annual soil tillage (as done for planted treatments) without planting a crop (Tillage-NoCrop). Maize residue biomass was every year returned to the soil of crops planted treatments, whereas cotton stems were uprooted, piled and burnt on the experimental plots as done locally for phyto-sanitary reasons. Treatment effects were analysed through a long-term change in crop productivity, in soil C and nutrient contents. Our results indicate that productivity of maize and notably of cotton cannot be sustained in this Ferralsol without nutrient inputs. On average, maize yields without fertilisers decreased from 2 t ha−1 after woodland clearing to 0.5 t ha−1 after 10 years of cultivation, while cotton yields decreased from 1.5 to 0.5 t ha−1 only after 5 years. In spite of the need of mineral fertiliser use to sustain productivity of this soil, there was little justification to increase inputs of mineral fertiliser over the research recommended rate. Over 20-year experiment, both maize and cotton while received N, P and K inputs at the research-recommended rates produced virtually the same yields as when these rates were increased by 50%. Although C inputs to soil under RR and 1.5 RR were greater than in the No-Fertiliser control (nil for Tillage-NoCrop), and the N input was more favourable for 1.5RR, the rates in which contents of soil C and N decreased over time did not differ substantially between treatments. Soil available P decreased for all treatments, while exchangeable K concentration increased under RR and 1.5 RR and decreased in unfertilised treatments (No-Fertiliser and Tillage-NoCrop). In fertilised plots and in tillage no-planted plots, soil pH decreased more than in No-Fertiliser plots. A decline of soil pH was associated with a decline of exchangeable Ca and Mg, which were on average 20 and 40% higher in fertilised plots than in No-Fertiliser plots. We conclude that soil C and N decline in this Ferralsol was more determined by a change in soil conditions due to woodland clearance and continuous tillage than by the quantities of C or N inputs added annually.

Mots-clés Agrovoc : Zea mays, Gossypium, engrais minéral, résidu de récolte, rotation culturale, fertilité du sol, fertilisation, matière organique du sol, rendement des cultures, propriété physicochimique du sol, carbone

Mots-clés géographiques Agrovoc : Togo, Afrique au sud du Sahara

Classification Agris : F04 - Fertilisation
P35 - Fertilité du sol
P33 - Chimie et physique du sol
F01 - Culture des plantes

Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive

Auteurs et affiliations

  • Kintché Kokou, ITRA (TGO)
  • Guibert Hervé, CIRAD-PERSYST-UPR AIDA (CMR)
  • Sogbédji J., Université de Lomé (TGO)
  • Levêque Jean, Université de Bourgogne (FRA)
  • Bonfoh Bassirou, ITRA (TGO)
  • Tittonell Pablo, Wageningen University (NLD)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/577386/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-01-28 ]