Ryu Youngryel, Baldocchi Daniel, Kobayashi Hideki, van Ingen Catharine, Li Jie, Black Andy, Beringer Jason, Van Gorsel Eva, Knohl Alexander, Law Beverly, Roupsard Olivier. 2011. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Global Biogeochemical Cycles, 25 (4)
Version publiée
- Anglais
Accès réservé aux personnels Cirad Sous licence CC0 1.0 Sans restriction de droits pour le monde entier. Ryu_2011_GBC Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales.pdf Télécharger (1MB) | Demander une copie |
Quartile : Outlier, Sujet : GEOSCIENCES, MULTIDISCIPLINARY / Quartile : Q1, Sujet : METEOROLOGY & ATMOSPHERIC SCIENCES / Quartile : Q1, Sujet : ENVIRONMENTAL SCIENCES
Résumé : We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r2 = 0.95, relative bias: 8%), gross primary productivity (r2 = 0.86, relative bias: 5%) and evapotranspiration (r2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 26 PgC yr1 and 500 104 mm yr1 (equivalent to 63,000 13,100 km3 yr1), respectively. BESS-derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine-learning, data-driven products, but the process-oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process-based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8-day interval over multiple years.
Mots-clés Agrovoc : forêt tropicale, évapotranspiration, écosystème forestier, cartographie de l'occupation du sol, cartographie des fonctions de la forêt, satellite, imagerie par satellite, radar, photosynthèse, modèle
Classification Agris : U30 - Méthodes de recherche
F40 - Écologie végétale
K01 - Foresterie - Considérations générales
Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés
Auteurs et affiliations
- Ryu Youngryel, UC (USA)
- Baldocchi Daniel, UC (USA)
- Kobayashi Hideki, UC (USA)
- van Ingen Catharine, Microsoft Research (USA)
- Li Jie, West Virginia University (USA)
- Black Andy, University of British Columbia (CAN)
- Beringer Jason, Monash University (AUS)
- Van Gorsel Eva, CSIRO (AUS)
- Knohl Alexander, Georg-August University of Göttingen (DEU)
- Law Beverly, Oregon State University (USA)
- Roupsard Olivier, CIRAD-PERSYST-UMR Eco&Sols (CRI) ORCID: 0000-0002-1319-142X
Source : Cirad-Agritrop (https://agritrop.cirad.fr/578790/)
[ Page générée et mise en cache le 2024-12-18 ]