Zenasni Sarah, Kergosien Eric, Roche Mathieu, Teisseire Maguelonne.
2015. Discovering types of spatial relations with a text mining approach.
In : Foundations of intelligent systems. Esposito Floriana (ed.), Pivert Olivier (ed.), Hacid Mohand-Said (ed.), Rás Zbigniew W. (ed.), Ferilli Stefano (ed.)
![]() |
Published version
- Anglais
Access restricted to CIRAD agents Use under authorization by the author or CIRAD. conf_ISMIS15.pdf Télécharger (301kB) | Request a copy |
Abstract : Knowledge discovery from texts, particularly the identification of spatial information is a difficult task due to the complexity of texts written in natural language. Here we propose a method combining two statistical approaches (lexical and contextual analysis) and a text mining approach to automatically identify types of spatial relations. Experiments conducted on an English corpus are presented. (Résumé d'auteur)
Mots-clés libres : Spatial relations, Text mining
Classification Agris : C30 - Documentation and information
U10 - Computer science, mathematics and statistics
Auteurs et affiliations
- Zenasni Sarah, CIRAD-ES-UMR TETIS (FRA)
- Kergosien Eric, Université de Lille (FRA)
-
Roche Mathieu, CIRAD-ES-UMR TETIS (FRA)
ORCID: 0000-0003-3272-8568
- Teisseire Maguelonne, LIRMM (FRA)
Autres liens de la publication
Source : Cirad-Agritrop (https://agritrop.cirad.fr/579646/)
[ Page générée et mise en cache le 2021-03-05 ]