Denis Marie, Tadesse Mahlet.
2015. Hierarchical approach for integrating various genomic data sets.
. ASA
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 2015 Joint Statistical Meetings - Statistics_ Making Better Decisions. - Seattle, Washington.pdf Télécharger (74kB) | Demander une copie |
|
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. JSM2015.pdf Télécharger (406kB) | Demander une copie |
Matériel d'accompagnement : 1 diaporama (22 vues)
Résumé : Advances in high-throughput technologies have led to the acquisition of various types of -omic data on the same biological samples. Each data type gives independent and complementary information that can explain the biological mechanisms of interest. While several studies performing independent analyses of each dataset have led to significant results, a better understanding of complex biological mechanisms requires an integrative analysis of different sources of -omic data. The proposed approach allows the integration of various genomic data types at the gene level by considering biological relationships between the different molecular features. Several scenarios and a flexible modeling, based on penalized likelihood approaches and EM algorithms, are studied and tested. The method is applied to genomic datasets from Glioblastoma Multiforme samples collected as part of the Cancer Genome Atlas project in order to elucidate biological mechanisms of the disease and identify markers associated with patients' survival.
Mots-clés libres : Hierarchical approach, Integration of -omic data, Penalized likelihood, EM algorithm
Classification Agris : U10 - Informatique, mathématiques et statistiques
000 - Autres thèmes
L10 - Génétique et amélioration des animaux
L73 - Maladies des animaux
U30 - Méthodes de recherche
Auteurs et affiliations
- Denis Marie, CIRAD-BIOS-UMR AGAP (FRA)
- Tadesse Mahlet, CIRAD-ES-UPR BSef (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/580170/)
[ Page générée et mise en cache le 2024-01-27 ]