Agritrop
Accueil

MultiLingMine 2016: modeling, learning and mining for cross/multilinguality

Romeo Salvatore, Tagarelli Andrea, Ienco Dino, Roche Mathieu, Rosso Paolo. 2016. MultiLingMine 2016: modeling, learning and mining for cross/multilinguality. In : Advances in information retrieval. Ferro Nicola (ed.), Crestani Fabio (ed.), Moens Marie-Francine (ed), Mothe Josiane (ed.), Silvestri Fabrizio (ed.), Di Nunzio Giorgio Maria (ed.), Hauff Claudia (ed.), Silvello Gianmaria (ed.). University of Padua. Cham : Springer, 869-873. (Lecture notes in computer science, 9626) ISBN 978-3-319-30670-4 European Conference on IR Research ECIR 2016. 38, Padua, Italie, 20 Mars 2016/23 Mars 2016.

Communication avec actes
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ECIR16.pdf

Télécharger (136kB) | Demander une copie

Url - éditeur : http://link.springer.com/chapter/10.1007%2F978-3-319-30671-1_83

Résumé : The increasing availability of text information coded in many different languages poses new challenges to modern information retrieval and mining systems in order to discover and exchange knowledge at a larger world-wide scale. The 1st International Workshop on Modeling, Learning and Mining for Cross/Multilinguality (dubbed MultiLingMine 2016) provides a venue to discuss research advances in cross-/multilingual related topics, focusing on new multidisciplinary research questions that have not been deeply investigated so far (e.g., in CLEF and related events relevant to CLIR). This includes theoretical and experimental on-going works about novel representation models, learning algorithms, and knowledge-based methodologies for emerging trends and applications, such as, e.g., cross-view cross-/multilingual information retrieval and document mining, (knowledge-based) translation-independent cross-/multilingual corpora, applications in social network contexts, and more.

Mots-clés libres : Information retrieval, Multilinguality, Natural language processing, Text mining

Classification Agris : C30 - Documentation et information
000 - Autres thèmes
U10 - Informatique, mathématiques et statistiques
U30 - Méthodes de recherche

Auteurs et affiliations

  • Romeo Salvatore, QCRI (QAT)
  • Tagarelli Andrea, University of Calabria (ITA)
  • Ienco Dino, LIRMM (FRA)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
  • Rosso Paolo, Universidad Politécnica de Valencia (ESP)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/580895/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2023-02-06 ]