Dumont Yves, Fourcaud Thierry, Peynaud Emilie. 2016. Discontinuous Galerkin solver for the unsteady advection-reaction-diffusion equation. Applications to the simulation and parameter identification of a root growth model. Biomath Communications, 3 (1), Résumé, 1 p. International Conference on Mathematical Methods and Models in Biosciences and School for Young Scientists, Blagoevgrad, Bulgarie, 19 Juin 2016/25 Juin 2016.
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. 617-3176-3-SM.pdf Télécharger (49kB) | Prévisualisation |
Url - éditeur : http://www.biomathforum.org/biomath/index.php/conference/article/view/617
Résumé : Root systems are important for plants but they are difficult to study because of heavy constraints of field experiments. Modelling and simulation of root systems are crucial tools to better understand root systems, but also to design new experiments. Among the various modelling approaches, the density approach consists in following the evolution over time and space of the root biomass density in the soil. The root density satisfies an unsteady advection-reaction-diffusion equation with coefficients varying in space and time according to the physiological phases of the root growth. At the moment there is no direct field experiment that can estimate or measure some of the coefficients of the equation. But since we know how to estimate the root density the missing coefficients are determined by solving an inverse problem. The problem is solved on unstructured meshes so that it allows the treatment of complex geometries and mesh refinements. It is well known that the Lagrange finite element method suffers from a lack of stability because of the advection term. Since our applications require the treatment of discontinuous parameters for example in the case of a stratified soil, we implemented an approximation based on Discontinuous Galerkin (DG) method. In the talk, we briefly present the DG method applied to root growth simulations. Then, we address the inverse problem of parameter identification which reduces to a non linear optimization problem and we show some numerical experiments.
Mots-clés libres : Root growth modelling, Simulation, ADR equation, Discontinuous Galerkin method, Estimation of parameters
Classification Agris : F62 - Physiologie végétale - Croissance et développement
U10 - Informatique, mathématiques et statistiques
Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive
Auteurs et affiliations
- Dumont Yves, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0003-4817-685X
- Fourcaud Thierry, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0001-9475-7239
- Peynaud Emilie, CIRAD-BIOS-UMR AMAP (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/581124/)
[ Page générée et mise en cache le 2024-12-27 ]