Agritrop
Accueil

Development and assessment of a geographic knowledge-based model for mapping suitable areas for Rift Valley fever transmission in Eastern Africa

Tran Annelise, Trevennec Carlène, Lutwama Julius, Sserugga Joseph, Gély Marie, Pittiglio Claudia, Pinto Julio, Chevalier Véronique. 2016. Development and assessment of a geographic knowledge-based model for mapping suitable areas for Rift Valley fever transmission in Eastern Africa. PLoS Neglected Tropical Diseases, 10 (9):e0004999, 20 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
2016_Tran_MCDA_RVF.PDF

Télécharger (6MB) | Prévisualisation

Url - jeu de données - Entrepôt autre : https://figshare.com/articles/Development_and_Assessment_of_a_Geographic_Knowledge-Based_Model_for_Mapping_Suitable_Areas_for_Rift_Valley_Fever_Transmission_in_Eastern_Africa/3836784

Résumé : Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review. A numerical weight was calculated for each risk factor using an analytical hierarchy process. The corresponding geographic data were collected, standardized and combined based on a weighted linear combination to produce maps of the suitability for RVF transmission. The accuracy of the resulting maps was assessed using RVF outbreak locations in livestock reported in Kenya and Tanzania between 1998 and 2012 and the ROC curve analysis. Our results confirmed the capacity of the geographic information system-based multi-criteria evaluation method to synthesize available scientific knowledge and to accurately map (AUC = 0.786; 95% CI [0.730–0.842]) the spatial heterogeneity of RVF suitability in East Africa. This approach provides users with a straightforward and easy update of the maps according to data availability or the further development of scientific knowledge.

Mots-clés Agrovoc : Virus de la fièvre de la vallée du Rift, épidémiologie, modèle mathématique, distribution géographique, genre humain, ruminant, cartographie, transmission des maladies, analyse du risque, facteur de risque, système d'information géographique, fièvre de la Vallée du Rift

Mots-clés géographiques Agrovoc : Afrique orientale, Kenya, République-Unie de Tanzanie, Ouganda, Éthiopie

Mots-clés libres : Rift Valley fever

Classification Agris : L73 - Maladies des animaux
L72 - Organismes nuisibles des animaux
U30 - Méthodes de recherche

Champ stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes

Auteurs et affiliations

  • Tran Annelise, CIRAD-ES-UPR AGIRs (REU) ORCID: 0000-0001-5463-332X
  • Trevennec Carlène, FAO (ITA)
  • Lutwama Julius, Uganda Virus Research Institute (UGA)
  • Sserugga Joseph, Ministry of Agriculture (Ouganda) (UGA)
  • Gély Marie, CIRAD-ES-UPR AGIRs (FRA)
  • Pittiglio Claudia, FAO (ITA)
  • Pinto Julio, FAO (ITA)
  • Chevalier Véronique, CIRAD-ES-UPR AGIRs (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/581719/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-21 ]