Agritrop
Accueil

The first step of ABA perception and signal transduction in coffee: evolutionary and expression of PYR/PYL/RCARs, PP2Cs and SNRK2s genes in C. canephora under drought

Cotta Michelle G., Rego Erica C.S., Bocs Stéphanie, Costa Tatiana S., Dufayard Jean François, This Dominique, Marraccini Pierre, Andrade Alan A.. 2016. The first step of ABA perception and signal transduction in coffee: evolutionary and expression of PYR/PYL/RCARs, PP2Cs and SNRK2s genes in C. canephora under drought. In : The 26th International Conference on Coffee Science (ASIC): Kunming 2016. ASIC. Kunming : ASIC, Résumé, 187. International Conference on Coffee Science. 26, Kunming, Chine, 13 Novembre 2016/19 Novembre 2016.

Communication avec actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
PB234 Cotta al ASIC 2016 v2.pdf

Télécharger (159kB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Cotta et al. ASIC 2016 PB234.pdf

Télécharger (744kB) | Prévisualisation

Matériel d'accompagnement : 1 poster

Résumé : Abscisic acid (ABA) pathway is aphytohormone universally conserved in land plants which coordinates several aspects of the plant response to water deficit such as root architecture, seed dormancy and regulation of stomatal closure. A mechanism of ABA signal transduction has been proposed, evolving intracellular ABA receptors (PYR/PYL/RCARs) interacting with PP2Cs phosphatases and SnRK2 protein kinases regulating this tripartite protein system. Rationale. The goal of this study was to identify and characterize for the first time the orthologs genes of this tripartite system in Coffea canephora. Methods. For this purpose, protein sequences from Arabidopsis, citrus, rice, grape, tomato and potato were chosen as query to search orthologous genes in the Coffee Genome Hub (http://coffee-genome.org/). Differential expression in tissues as leaves, seeds, roots and floral organs was checked through in silky analyses. In vivo gene expression analyses were also performed by RT-qPCR in leaves and roots of drought-tolerant (DT 14, 73 and 120) and drought-susceptible (Ds 22) C canephora Conilon clones submitted or not) to drought. Results. This approach allowed the identification and characterization of 17 candidate genes (9 PYL/RCARs, 6 PP2Cs and 2 SnRK2s) in C. canephora genome. The protein motifs identified in predict coffee sequences enabled characterize these genes as family's members of PYL/RCARs receptors, PP2Cs phosphatases or SnRK2 kinases of the ABA response pathway. These families were functionally annotated in the C. canephora genome. In vivo analyses revealed that eight genes are up-regulated under drought conditions in both leaves and roots tissues. Among them, three genes coding phosphatases were expressed in all (DT and Ds) clones therefore suggesting that they were activated as a general response to cope with drought stress. However, two other phosphatase coding genes were up-regulated only in the DT clones, suggesting that they constituted key-genes for drought tolerance in these clones. The DT clones also showed differential gene expression profiles for five other genes therefore reinforcing the idea that multiple biological mechanisms are involved drought tolerance in C. canephora. Conclusions and Perspectives. All these evidences will help us to identify the genetic determinism of drought tolerance through ABA pathway essential to obtain molecular markers that could be used in coffee breeding programs. (Texte intégral)

Classification Agris : F30 - Génétique et amélioration des plantes
H50 - Troubles divers des plantes
F60 - Physiologie et biochimie végétale

Auteurs et affiliations

Autres liens de la publication

Source : Cirad-Agritrop (https://agritrop.cirad.fr/582724/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-08-27 ]