Agritrop
Accueil

Exploiting social and mobility patterns for friendship prediction in location-based social networks

Valverde-Rebaza Jorge, Roche Mathieu, Poncelet Pascal, De Andrade Lopes Alneu. 2016. Exploiting social and mobility patterns for friendship prediction in location-based social networks. In : 2016 23rd International Conference on Pattern Recognition (ICPR). IAPR, ICPR2016. Cancun : IAPR-ICPR, 6 p. International Conference on Pattern Recognition (ICPR). 23, Cancun, Mexique, 4 Décembre 2016/8 Décembre 2016.

Communication avec actes
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
lbsn-jvalverr-icpr2016.pdf

Télécharger (242kB) | Demander une copie

Url - éditeur : http://www.icpr2016.org/site/

Résumé : Link prediction is a “hot topic” in network analysis and has been largely used for friendship recommendation in social networks. With the increased use of location-based services, it is possible to improve the accuracy of link prediction methods by using the mobility of users. The majority of the link prediction methods focus on the importance of location for their visitors, disregarding the strength of relationships existing between these visitors. We, therefore, propose three new methods for friendship prediction by combining, efficiently, social and mobility patterns of users in location-based social networks (LBSNs). Experiments conducted on real-world datasets demonstrate that our proposals achieve a competitive performance with methods from the literature and, in most of the cases, outperform them. Moreover, our proposals use less computational resources by reducing considerably the number of irrelevant predictions, making the link prediction task more efficient and applicable for real world applications.

Mots-clés libres : Data mining, Link prediction, Location-based social networks, Friendship prediction, Mobility patterns, User behavior

Classification Agris : U30 - Méthodes de recherche
C30 - Documentation et information
000 - Autres thèmes
U10 - Informatique, mathématiques et statistiques

Auteurs et affiliations

  • Valverde-Rebaza Jorge, USP (BRA)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
  • Poncelet Pascal, LIRMM (FRA)
  • De Andrade Lopes Alneu, USP (BRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/584223/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2023-02-28 ]