Agritrop
Accueil

Going deeper in the automated identification of Herbarium specimens

Carranza-Rojas Jose Mario, Goeau Hervé, Bonnet Pierre, Mata-Montero Erick, Joly Alexis. 2017. Going deeper in the automated identification of Herbarium specimens. BMC Evolutionary Biology, 17:e181, 14 p.

Article de revue ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
585506.pdf

Télécharger (13MB) | Prévisualisation

Url - jeu de données - Entrepôt autre : http://otmedia.lirmm.fr/LifeCLEF/GoingDeeperHerbarium/

Quartile : Q2, Sujet : GENETICS & HEREDITY / Quartile : Q2, Sujet : EVOLUTIONARY BIOLOGY

Résumé : Background: Hundreds of herbarium collections have accumulated a valuable heritage and knowledge of plants over several centuries. Recent initiatives started ambitious preservation plans to digitize this information and make it available to botanists and the general public through web portals. However, thousands of sheets are still unidentified at the species level while numerous sheets should be reviewed and updated following more recent taxonomic knowledge. These annotations and revisions require an unrealistic amount of work for botanists to carry out in a reasonable time. Computer vision and machine learning approaches applied to herbarium sheets are promising but are still not well studied compared to automated species identification from leaf scans or pictures of plants in the field. Results: In this work, we propose to study and evaluate the accuracy with which herbarium images can be potentially exploited for species identification with deep learning technology. In addition, we propose to study if the combination of herbarium sheets with photos of plants in the field is relevant in terms of accuracy, and finally, we explore if herbarium images from one region that has one specific flora can be used to do transfer learning to another region with other species; for example, on a region under-represented in terms of collected data. Conclusions: This is, to our knowledge, the first study that uses deep learning to analyze a big dataset with thousands of species from herbaria. Results show the potential of Deep Learning on herbarium species identification, particularly by training and testing across different datasets from different herbaria. This could potentially lead to the creation of a semi, or even fully automated system to help taxonomists and experts with their annotation, classification, and revision works.

Mots-clés Agrovoc : herbier, apprentissage machine, identification, imagerie, collection botanique, biodiversité, traitement des données

Classification Agris : F70 - Taxonomie végétale et phytogéographie

Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires

Auteurs et affiliations

  • Carranza-Rojas Jose Mario, CIRAD-BIOS-UMR AMAP (FRA)
  • Goeau Hervé, CIRAD-BIOS-UMR AMAP (FRA)
  • Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
  • Mata-Montero Erick, Instituto Tecnológico de Costa Rica (CRI)
  • Joly Alexis, INRIA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/585506/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-15 ]