Affouard Antoine, Goeau Hervé, Bonnet Pierre, Lombardo Jean-Christophe, Joly Alexis.
2017. Pl@ntNet app in the era of deep learning.
|
Version publiée
- Anglais
Sous licence CC0 1.0 Sans restriction de droits pour le monde entier. plantnet.app.deep.learning.pdf Télécharger (1MB) | Prévisualisation |
Résumé : Pl@ntNet is a large-scale participatory platform and information system dedicated to the production of botanical data through image-based plant identification. In June 2015, Pl@ntNet mobile front-ends moved from classical hand-crafted visual features to deep-learning based image representations. This paper gives an overview of today's Pl@ntNet architecture and discusses how the introduction of convolutional neural networks did improve the whole workflow along the years.
Classification Agris : F70 - Taxonomie végétale et phytogéographie
C30 - Documentation et information
C20 - Vulgarisation
Auteurs et affiliations
- Affouard Antoine, CIRAD-BIOS-UMR AMAP (FRA)
- Goeau Hervé, CIRAD-BIOS-UMR AMAP (FRA)
- Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
- Lombardo Jean-Christophe, INRIA (FRA)
- Joly Alexis, INRIA (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/585562/)
[ Page générée et mise en cache le 2022-04-02 ]