Agritrop
Accueil

Inference of the infection status of individuals using longitudinal testing data from cryptic populations: Towards a probabilistic approach to diagnosis

Buzdugan Svetlana N., Vergne Timothée, Grosbois Vladimir, Delahay Richard J., Drewe Julian. 2017. Inference of the infection status of individuals using longitudinal testing data from cryptic populations: Towards a probabilistic approach to diagnosis. Scientific Reports, 7:1111, 11 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
s41598-017-00806-4.pdf

Télécharger (1MB) | Prévisualisation

Quartile : Q1, Sujet : MULTIDISCIPLINARY SCIENCES

Résumé : Effective control of many diseases requires the accurate detection of infected individuals. Confidently ascertaining whether an individual is infected can be challenging when diagnostic tests are imperfect and when some individuals go for long periods of time without being observed or sampled. Here, we use a multi-event capture-recapture approach to model imperfect observations of true epidemiological states. We describe a method for interpreting potentially disparate results from individuals sampled multiple times over an extended period, using empirical data from a wild badger population naturally infected with Mycobacterium bovis as an example. We examine the effect of sex, capture history and current and historical diagnostic test results on the probability of being truly infected, given any combination of diagnostic test results. In doing so, we move diagnosis away from the traditional binary classification of apparently infected versus uninfected to a probability-based interpretation which is updated each time an individual is re-sampled. Our findings identified temporal variation in infection status and suggest that capture probability is influenced by year, season and infection status. This novel approach to combining ecological and epidemiological data may aid disease management decision-making by providing a framework for the integration of multiple diagnostic test data with other information.

Mots-clés Agrovoc : épidémiologie, blaireau, surveillance épidémiologique, Mycobacterium bovis, diagnostic, contrôle de maladies, variation saisonnière, maladie des animaux

Classification Agris : L73 - Maladies des animaux
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes

Auteurs et affiliations

  • Buzdugan Svetlana N., Royal Veterinary College (GBR)
  • Vergne Timothée, Royal Veterinary College (GBR)
  • Grosbois Vladimir, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0003-1835-1434
  • Delahay Richard J., APHA (GBR)
  • Drewe Julian, Royal Veterinary College (GBR)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/585621/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-01-14 ]