Botella Christophe, Joly Alexis, Bonnet Pierre, Monestiez Pascal, Munoz François. 2018. Species distribution modeling based on the automated identification of citizen observations. Applications in Plant Sciences, 6 (2), n.spéc. Green Digitization: Online Botanical Collections Data Answering Real-World Questions:e1029, 11 p.
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. aps3.1029.pdf Télécharger (965kB) | Prévisualisation |
Quartile : Q3, Sujet : PLANT SCIENCES
Résumé : Premise of the Study: A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. Methods: We used deep learning techniques to automatically identify opportunistic plant observations made by citizens through a popular mobile application. We compared species distribution modeling of invasive alien plants based on these data to inventories made by experts. Results: The trained models have a reasonable predictive effectiveness for some species, but they are biased by the massive presence of cultivated specimens. Discussion: The method proposed here allows for fine‐grained and regular monitoring of some species of interest based on opportunistic observations. More in‐depth investigation of the typology of the observations and the sampling bias should help improve the approach in the future.
Classification Agris : F40 - Écologie végétale
F70 - Taxonomie végétale et phytogéographie
C30 - Documentation et information
C20 - Vulgarisation
Champ stratégique Cirad : Axe 6 (2014-2018) - Sociétés, natures et territoires
Auteurs et affiliations
- Botella Christophe, INRIA (FRA)
- Joly Alexis, INRIA (FRA)
- Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389 - auteur correspondant
- Monestiez Pascal, INRA (FRA)
- Munoz François, Université Grenoble Alpes (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/587696/)
[ Page générée et mise en cache le 2024-12-18 ]