Velcin Julien, Gourru Antoine, Giry-Fouquet Erwan, Gravier Christophe, Roche Mathieu, Poncelet Pascal.
2018. Readitopics: Make your topic models readable via labeling and browsing.
In : Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). Lang Jérôme (ed.). IJCAI
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. Velcin_et_al_IJCAI2018.pdf Télécharger (457kB) | Prévisualisation |
Url - éditeur : https://www.ijcai.org/proceedings/2018/
Résumé : Readitopics provides a new tool for browsing a textual corpus that showcases several recent work on topic labeling and topic coherence. We demonstrate the potential of these techniques to get a deeper understanding of the topics that structure different datasets. This tool is provided as a Web demo but it can be installed to experiment with your own dataset. It can be further extended to deal with more advanced topic modeling techniques.
Mots-clés libres : Clustering, Text mining, Information retrieval
Auteurs et affiliations
- Velcin Julien, Université de Lyon (FRA)
- Gourru Antoine, Université de Lyon (FRA)
- Giry-Fouquet Erwan, Université de Lyon (FRA)
- Gravier Christophe, Université de Lyon (FRA)
- Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
- Poncelet Pascal, LIRMM (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/588316/)
[ Page générée et mise en cache le 2021-07-07 ]