Jaillard Benoît, Deleporte Philippe, Loreau Michel, Violle Cyrille. 2018. A combinatorial analysis using observational data identifies species combinations that govern ecosystem functioning. PloS One, 13 (8):e0201135, 21 p.
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. PLOSoneJaillard.pdf Télécharger (1MB) | Prévisualisation |
|
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. journal.pone.0201135.pdf Télécharger (2MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://doi.org/10.5061/dryad.1v1k6rj
Quartile : Q2, Sujet : MULTIDISCIPLINARY SCIENCES
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie; Staps
Note générale : Corrigendum paru dans PloS One, (2018) 4 p. https://doi.org/10.1371/journal.pone.0203681
Résumé : The variability of natural rubber (NR) properties has been partly ascribed to the 3 to 5% non-isoprene Understanding the relationship between biodiversity and ecosystem functioning has so far resulted from two main approaches: the analysis of species' functional traits, and the analysis of species interaction networks. Here we propose a third approach, based on the association between combinations of species or of functional groups, which we term assembly motifs, and observed ecosystem functioning. Each assembly motif describes a biotic environment in which species interactions have particular effects on a given ecosystem function. Clustering species in functional groups generates a classification of ecosystems based on their assembly motif. We evaluate the quality of each species clustering, that is its ability to predict an ecosystem function, by the coefficient of determination of the ecosystem classification. An iterative process then enables identifying the species clustering in functional groups that best accounts for the functioning of the observed ecosystems. We test this approach using experimental and simulated datasets. We show that our combinatorial analysis makes it possible to identify the combinations of functional groups of species whose interactions govern ecosystem functioning without any a priori knowledge of the species themselves or their interactions. Our combinatorial approach reproduces the associative learning of empirical ecologists, and proves to be powerful and parsimonious.
Mots-clés Agrovoc : latex, composition chimique, écosystème forestier
Classification Agris : K50 - Technologie des produits forestiers
F60 - Physiologie et biochimie végétale
F40 - Écologie végétale
Champ stratégique Cirad : Axe 2 (2014-2018) - Valorisation de la biomasse
Auteurs et affiliations
- Jaillard Benoît, INRA (FRA) - auteur correspondant
- Deleporte Philippe, CIRAD-PERSYST-UMR Eco&Sols (FRA)
- Loreau Michel, CNRS (FRA)
- Violle Cyrille, CEFE (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/588761/)
[ Page générée et mise en cache le 2024-10-11 ]