Agritrop
Home

A combinatorial analysis using observational data identifies species combinations that govern ecosystem functioning

Jaillard Benoît, Deleporte Philippe, Loreau Michel, Violle Cyrille. 2018. A combinatorial analysis using observational data identifies species combinations that govern ecosystem functioning. PloS One, 13 (8):e0201135, 21 p.

Journal article ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Preview
Published version - Anglais
Use under authorization by the author or CIRAD.
PLOSoneJaillard.pdf

Télécharger (1MB) | Preview
[img]
Preview
Published version - Anglais
Use under authorization by the author or CIRAD.
journal.pone.0201135.pdf

Télécharger (2MB) | Preview

Url - jeu de données : https://doi.org/10.5061/dryad.1v1k6rj

Quartile : Q2, Sujet : MULTIDISCIPLINARY SCIENCES

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie; Staps

Additional Information : Corrigendum paru dans PloS One, (2018) 4 p. https://doi.org/10.1371/journal.pone.0203681

Abstract : The variability of natural rubber (NR) properties has been partly ascribed to the 3 to 5% non-isoprene Understanding the relationship between biodiversity and ecosystem functioning has so far resulted from two main approaches: the analysis of species' functional traits, and the analysis of species interaction networks. Here we propose a third approach, based on the association between combinations of species or of functional groups, which we term assembly motifs, and observed ecosystem functioning. Each assembly motif describes a biotic environment in which species interactions have particular effects on a given ecosystem function. Clustering species in functional groups generates a classification of ecosystems based on their assembly motif. We evaluate the quality of each species clustering, that is its ability to predict an ecosystem function, by the coefficient of determination of the ecosystem classification. An iterative process then enables identifying the species clustering in functional groups that best accounts for the functioning of the observed ecosystems. We test this approach using experimental and simulated datasets. We show that our combinatorial analysis makes it possible to identify the combinations of functional groups of species whose interactions govern ecosystem functioning without any a priori knowledge of the species themselves or their interactions. Our combinatorial approach reproduces the associative learning of empirical ecologists, and proves to be powerful and parsimonious.

Mots-clés Agrovoc : Latex, Composition chimique, Écosystème forestier

Classification Agris : K50 - Processing of forest products
F60 - Plant physiology and biochemistry
F40 - Plant ecology

Champ stratégique Cirad : Axe 2 (2014-2018) - Valorisation de la biomasse

Auteurs et affiliations

  • Jaillard Benoît, INRA (FRA) - auteur correspondant
  • Deleporte Philippe, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Loreau Michel, CNRS (FRA)
  • Violle Cyrille, CEFE (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/588761/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-01 ]