Agritrop
Accueil

Modelling pesticides leaching in cropping systems: Effect of uncertainties in climate, agricultural practices, soil and pesticide properties

Lammoglia Sabine Karen Djidemi, Brun François, Quemar Thibaud, Moeys Julien, Barriuso Enrique, Gabrielle Benoît, Mamy Laure. 2018. Modelling pesticides leaching in cropping systems: Effect of uncertainties in climate, agricultural practices, soil and pesticide properties. Environmental Modelling and Software, 109 : 342-352.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Lammoglia_Modelling_Uncertainties.pdf

Télécharger (1MB) | Demander une copie

Quartile : Q1, Sujet : COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS / Quartile : Q1, Sujet : ENVIRONMENTAL SCIENCES / Quartile : Q2, Sujet : ENGINEERING, ENVIRONMENTAL

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Résumé : Modelling of pesticide leaching is paramount to managing the environmental risks associated with the chemical protection of crops, but it involves large uncertainties in relation to climate, agricultural practices, soil and pesticide properties. We used Latin Hypercube Sampling to estimate the contribution of these input factors with the STICS-MACRO model in the context of a 400 km2 catchment in France, and two herbicides applied to maize: bentazone and S-metolachlor. For both herbicides, the most influential input factors on modelling of pesticide leaching were the inter-annual variability of climate, the pesticide adsorption coefficient and the soil boundary hydraulic conductivity, followed by the pesticide degradation half-life and the rainfall spatial variability. This work helps to identify the factors requiring greater accuracy to ensure better pesticide risk assessment and to improve environmental management and decision-making processes by quantifying the probability and reliability of prediction of pesticide concentrations in groundwater with STICS-MACRO.

Classification Agris : H01 - Protection des végétaux - Considérations générales
P40 - Météorologie et climatologie
F08 - Systèmes et modes de culture

Champ stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes

Auteurs et affiliations

  • Lammoglia Sabine Karen Djidemi, CIRAD-PERSYST-UMR SYSTEM (FRA) ORCID: 0000-0002-8807-2791
  • Brun François, INRA (FRA)
  • Quemar Thibaud, INRA (FRA)
  • Moeys Julien, Swedish University of Agricultural Sciences (SWE)
  • Barriuso Enrique, INRA (FRA)
  • Gabrielle Benoît, INRA (FRA)
  • Mamy Laure, INRA (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/589373/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-19 ]