Perez Raphaël, Pallas Benoît, Le Moguédec Gilles, Rey Hervé, Griffon Sébastien, Caliman Jean-Pierre, Costes Evelyne, Dauzat Jean. 2016. Integrating mixed-effect models into an architectural plant model to simulate inter- and intra-progeny variability: A case study on oil palm (Elaeis guineensis Jacq.). Journal of Experimental Botany, 67 (15) : 4507-4521.
|
Version publiée
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. Perez_JExpBot_2016.pdf Télécharger (2MB) | Prévisualisation |
Quartile : Outlier, Sujet : PLANT SCIENCES
Résumé : Three-dimensional (3D) reconstruction of plants is time-consuming and involves considerable levels of data acquisition. This is possibly one reason why the integration of genetic variability into 3D architectural models has so far been largely overlooked. In this study, an allometry-based approach was developed to account for architectural variability in 3D architectural models of oil palm (Elaeis guineensis Jacq.) as a case study. Allometric relationships were used to model architectural traits from individual leaflets to the entire crown while accounting for ontogenetic and morphogenetic gradients. Inter- and intra-progeny variabilities were evaluated for each trait and mixed-effect models were used to estimate the mean and variance parameters required for complete 3D virtual plants. Significant differences in leaf geometry (petiole length, density of leaflets, and rachis curvature) and leaflet morphology (gradients of leaflet length and width) were detected between and within progenies and were modelled in order to generate populations of plants that were consistent with the observed populations. The application of mixed-effect models on allometric relationships highlighted an interesting trade-off between model accuracy and ease of defining parameters for the 3D reconstruction of plants while at the same time integrating their observed variability. Future research will be dedicated to sensitivity analyses coupling the structural model presented here with a radiative balance model in order to identify the key architectural traits involved in light interception efficiency.
Mots-clés Agrovoc : Elaeis guineensis, morphologie végétale, anatomie végétale, variation génétique, modélisation des cultures, modèle mathématique, allométrie
Mots-clés géographiques Agrovoc : Indonésie
Mots-clés libres : Allometric relationship, Elaeis guineensis, Genetic variability, Mixed model, Plant architecture, Threen dimensional reconstruction
Classification Agris : F50 - Anatomie et morphologie des plantes
U10 - Informatique, mathématiques et statistiques
F30 - Génétique et amélioration des plantes
Champ stratégique Cirad : Axe 1 (2014-2018) - Agriculture écologiquement intensive
Auteurs et affiliations
- Perez Raphaël, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0001-5270-9212
- Pallas Benoît, INRA (FRA)
- Le Moguédec Gilles, INRA (FRA)
- Rey Hervé, CIRAD-BIOS-UMR AMAP (FRA)
- Griffon Sébastien, CIRAD-BIOS-UMR AMAP (FRA)
- Caliman Jean-Pierre, SMART Research Institute (IDN)
- Costes Evelyne, INRA (FRA)
- Dauzat Jean, CIRAD-BIOS-UMR AMAP (FRA) - auteur correspondant
Source : Cirad-Agritrop (https://agritrop.cirad.fr/589637/)
[ Page générée et mise en cache le 2025-01-18 ]