Agritrop
Accueil

The Genomic Selection of Theobroma cacao: a new strategy of marker assisted selection to improve breeding efficiency and predict useful traits in new populations. [20]

Ribeyre Fabienne, Sounigo Olivier, Argout Xavier, Cilas Christian, Efombagn Mousseni Ives Bruno, Denis Marie, Bouvet Jean-Marc, Fouet Olivier, Lanaud Claire. 2017. The Genomic Selection of Theobroma cacao: a new strategy of marker assisted selection to improve breeding efficiency and predict useful traits in new populations. [20]. In : Proceedings of the International Symposium on cocoa research. ICCO. Lima : ICCO, 7 p. International Symposium on Cocoa Research (ISCR 2017). 1, Lima, Pérou, 13 Novembre 2017/17 Novembre 2017.

Communication avec actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID589763.pdf

Télécharger (310kB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID589763_D.pdf

Télécharger (1MB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID589763.pdf

Télécharger (434kB) | Prévisualisation

Url - éditeur : https://www.icco.org/icco-documentation/international-cocoa-symposium-2017/international-cocoa-symposium-2017-proceedings/#toggle-id-1

Matériel d'accompagnement : 1 diaporama (10 vues)

Résumé : Genomic selection (GS) is a statistical approach that utilizes all available genome-wide markers simultaneously and phenotypic traits of a “training population” to estimate breeding values or total genetic values. For breeding programs, GS is a promising alternative to the traditional marker-assisted selection for manipulating complex polygenic traits often controlled by many small effect genes. A major interest of this method is also to be able to make predictions of trait values, from a training population, on trees only genotyped by molecular markers The use of the appropriate statistical model remains one of the critical issues of the GS. The relative performance of biometrical models is expected to depend on the genetic background of the traits under assessment. The objective of this study was to estimate the reliability of different models of genomic selection to predict two agronomic traits of cacao - yield and resistance to Phytophthora pod rot. The study was performed on 287 trees present in a cacao farm plot in Cameroon, belonging to several full-sib progenies released to farmers as commercial varieties. Each tree was genotyped, using more than 5,000 GBS (genotyping by sequencing) based on SNP markers, and assessed for the mean average of one bean, a trait contributing to cocoa yield, and the % of rotten, as a measure of resistance to Phytophthora megakarya. Two models were used: Best linear unbiased prediction model and Bayesian lasso model. Cross-validation was used to test their predictive ability. It is an assumption-free method using an estimation set for model training and an independent test set for prediction. Predictive ability of models was good for both traits indicating that GS is a promising method to improve these cocoa traits. However, it was slightly higher for average weight of a bean (R= 0.59) than for % of rotten pods (R= 0.42).

Classification Agris : F30 - Génétique et amélioration des plantes
U10 - Informatique, mathématiques et statistiques

Auteurs et affiliations

Source : Cirad-Agritrop (https://agritrop.cirad.fr/589763/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-11-04 ]