Denis Marie, Cochard Benoît, Syahputra Indra, De Franqueville Hubert, Tisne Sébastien. 2018. Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.. Spatial and Spatio-Temporal Epidemiology, 24 : 63-74.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 2018_SSTE.pdf Télécharger (1MB) | Demander une copie |
Résumé : In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software.
Classification Agris : H20 - Maladies des plantes
K10 - Production forestière
Champ stratégique Cirad : Axe 4 (2014-2018) - Santé des animaux et des plantes
Auteurs et affiliations
- Denis Marie, CIRAD-BIOS-UMR AGAP (FRA) - auteur correspondant
- Cochard Benoît, PalmElit (FRA)
- Syahputra Indra, SOCFINDO (IDN)
- De Franqueville Hubert, PalmElit (FRA)
- Tisne Sébastien, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-9838-3975
Source : Cirad-Agritrop (https://agritrop.cirad.fr/590464/)
[ Page générée et mise en cache le 2024-12-12 ]