Agritrop
Accueil

Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France

Albers Ariane Christine, Collet Pierre, Lorne Daphné, Benoist Anthony, Helias Arnaud. 2019. Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France. Applied Energy, 239 : 316-330.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Albers 2019 - Coupling TIMES-MIRET and dynamic biogenic C.pdf

Télécharger (3MB) | Demander une copie

Quartile : Outlier, Sujet : ENGINEERING, CHEMICAL / Quartile : Q1, Sujet : ENERGY & FUELS

Résumé : Bioenergy systems are promoted in an effort to mitigate climate change, and policies are defined accordingly to be implemented in the coming decades. Life Cycle Assessment (LCA) is used to assess the environmental performance of bioenergy systems, yet subject to the limitations of static approaches. In classical LCA, no temporal differentiation is undertaken: all inventoried instant to long-term greenhouse gases emissions (GHG) are aggregated and characterised in the same way, over a fixed time horizon, by means of fixed characterisation factors. Positive and negative impact contributions of dynamic biogenic carbon (Cbio) sum up to zero, yielding the same result as carbon neutral estimates. Climate mitigation results are biased without the temporal consideration of these flows. The purpose of the study is to highlight the time-sensitive potential climatic consequences of policy-driven transport strategies for metropolitan France, in the specific context of the dynamic LCA framework and climate change mitigation. We therefore propose a dynamic approach coupling a partial-equilibrium model (PEM) with dynamic Cbio models. The PEM analyses in detail the techno-economic performance of the metropolitan French energy-transport sector. It explores prospective optimization options (supply-demand equilibrium) of emerging commodity and energy process pathways in response to a policy in question. The Cbio model generates dynamic inventories of the Cbio embedded in the primary renewable biomass outputs of the PEM. It captures the dynamic Cbio exchange flows between the atmosphere and the technosphere over time: negative emissions from fixation (sequestration) and positive emissions from release (e.g. combustion or decay). A dynamic impact method is applied to evaluate the mitigation effects of Cbio from forest wood residues by comparing the climate change impacts from complete carbon (fossil + biogenic) with carbon neutral inventories across scenarios. Two sets of results are computed concerning the overall transport (all emissions) and bioethanol (wood-to-fuel emissions) systems. The mitigation effect from long-term historic sequestration allocated to bioethanol (462%) is significantly larger than for transport (3%), expressed as the difference with carbon neutral estimates. The fossil-sourced emissions from bioethanol production represents only 5.4%. In contrast, a comparison with an alternative reference scenario involving wood decay demonstrated higher impacts (i.e. an increase of 316%) than carbon neutral estimates. The representation of the actual climatic consequences depends on the chosen fixed end-year of the dynamic impact assessment. Moreover, the mitigation effect is proven sensitive to the rotation length of forestry wood: the shorter the length the lower the mitigation from using renewable forest resources. Other energy-policy scenarios, Cbio modelling approaches and consequences of indirect effects should be further studied and contrasted.

Mots-clés Agrovoc : changement climatique, réduction des émissions, transport, bioénergie, gestion des ressources naturelles, séquestration du carbone, modèle mathématique

Mots-clés géographiques Agrovoc : France

Mots-clés libres : Biogenic carbon, Climate change mitigation, Time-dynamic LCA, Transport sector, Partial-equilibrium model

Classification Agris : P40 - Météorologie et climatologie
P06 - Sources d'énergie renouvelable
P33 - Chimie et physique du sol
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : CTS 6 (2019-) - Changement climatique

Auteurs et affiliations

  • Albers Ariane Christine, CIRAD-PERSYST-UPR BioWooEB (FRA) - auteur correspondant
  • Collet Pierre, IFPEN (FRA)
  • Lorne Daphné, IFPEN (FRA)
  • Benoist Anthony, CIRAD-PERSYST-UPR BioWooEB (FRA) ORCID: 0000-0001-6635-4192
  • Helias Arnaud, Montpellier SupAgro (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/591419/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2025-01-16 ]