Rossi Lorenzo, Mao Zhun, Merino-Martin Luis, Roumet Catherine, Fort Florian, Taugourdeau Olivier, Boukcim Hassan, Fourtier Stephane, Del Rey-Granado Maria, Chevallier Tiphaine, Cardinael Rémi, Fromin Nathalie, Stokes Alexia. 2020. Pathways to persistence: Plant root traits alter carbon accumulation in different soil carbon pools. Plant and Soil, 452 (1-2) : 457-478.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. 595958.pdf Télécharger (3MB) | Demander une copie |
|
Version Online first
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Rossi2020 Pathways to persistence plant root traits alter carbon.pdf Télécharger (3MB) | Demander une copie |
Url - éditeur : https://rdcu.be/b4RMa
Quartile : Q1, Sujet : AGRONOMY / Quartile : Q1, Sujet : PLANT SCIENCES / Quartile : Q2, Sujet : SOIL SCIENCE
Résumé : Aims: Mineral-associated organic matter, mainly derived from microbial by-products, persists longer in soil compared to particulate organic matter (POM). POM is highly recalcitrant and originates largely from decomposing root and shoot litter. Theory suggests that root traits and growth dynamics should affect carbon (C) accumulation into these different pools, but the specific traits driving this accumulation are not clearly identified. Methods: Twelve herbaceous species were grown for 37 weeks in monocultures. Root elongation rate (RER) was measured throughout the experiment. At the end of the experiment, we determined morphological and chemical root traits, as well as substrate induced respiration (SIR) as a proxy for microbial activity. Carbon was measured in four different soil fractions, following particle-size and density fractionation. Results: Root biomass, RER, root diameter, hemicellulose content and SIR (characteristic of N2-fixing Fabaceae species), were all positively correlated with increased C in the coarse silt fraction. Root diameter and hemicellulose content were negatively correlated with C in the POM fraction, that was greater under non N2-fixing Poaceae species, characterized by lignin-rich roots with a high carbon:nitrogen ratio that grew slowly. The accumulation of C in different soil pools was mediated by microbial activity. Conclusions: Our results show that root traits determine C input into different soil pools, mediated primarily by microbial activity, thus determining the fate of soil organic C. We also highlight that C in different soil pools, and not only total soil organic C, should be reported in future studies to better understand its origin, fate and dynamics.
Mots-clés Agrovoc : racine, caractère agronomique, séquestration du carbone, biomasse, carbone organique du sol
Mots-clés libres : Particulate organic matter, Mineral-associated organic matter, Carbon stabilization, Physical and density soil fractionation, Root biomass, Root elongation rate, Substrate induced respiration, Microbial biomass
Classification Agris : F60 - Physiologie et biochimie végétale
P33 - Chimie et physique du sol
Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques
Agences de financement européennes : European Commission
Programme de financement européen : H2020
Projets sur financement : (EU) Training Engineers and Researchers to Rethink geotechnical Engineering for a low carbon future
Auteurs et affiliations
- Rossi Lorenzo, Université de Montpellier (FRA) - auteur correspondant
- Mao Zhun, Université de Montpellier (FRA)
- Merino-Martin Luis, INRAE (FRA)
- Roumet Catherine, CNRS (FRA)
- Fort Florian, CEFE (FRA)
- Taugourdeau Olivier, Valorhiz (FRA)
- Boukcim Hassan, Valorhiz (FRA)
- Fourtier Stephane, Université de Montpellier (FRA)
- Del Rey-Granado Maria, Université de Montpellier (FRA)
- Chevallier Tiphaine, IRD (FRA)
- Cardinael Rémi, CIRAD-PERSYST-UPR AIDA (ZWE) ORCID: 0000-0002-9924-3269
- Fromin Nathalie, CEFE (FRA)
- Stokes Alexia, INRAE (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/595958/)
[ Page générée et mise en cache le 2024-12-18 ]