Munyengwa Norman, Le Guen Vincent, Ngalle Bille Hermine, Souza Livia Moura, Clément-Demange André, Mournet Pierre, Masson Aurélien, Soumahoro Mouman, Kouassi Daouda, Cros David. 2021. Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study. Genomics, 113 (2) : 655-668.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. EN2605.pdf Télécharger (6MB) | Demander une copie |
||
|
Version post-print
- Anglais
Sous licence . 597472_MAA.pdf Télécharger (1MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://www.ncbi.nlm.nih.gov/sra/PRJNA645262
Quartile : Q2, Sujet : BIOTECHNOLOGY & APPLIED MICROBIOLOGY / Quartile : Q2, Sujet : GENETICS & HEREDITY
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie
Résumé : Genotyping-by-sequencing (GBS) provides the marker density required for genomic predictions (GP). However, GBS gives a high proportion of missing SNP data which, for species without a chromosome-level genome assembly, must be imputed without knowing the SNP physical positions. Here, we compared GP accuracy with seven map-independent and two map-dependent imputation approaches, and when using all SNPs against the subset of genetically mapped SNPs. We used two rubber tree (Hevea brasiliensis) datasets with three traits. The results showed that the best imputation approaches were LinkImputeR, Beagle and FImpute. Using the genetically mapped SNPs increased GP accuracy by 4.3%. Using LinkImputeR on all the markers allowed avoiding genetic mapping, with a slight decrease in GP accuracy. LinkImputeR gave the highest level of correctly imputed genotypes and its performances were further improved by its ability to define a subset of SNPs imputed optimally. These results will contribute to the efficient implementation of genomic selection with GBS. For Hevea, GBS is promising for rubber yield improvement, with GP accuracies reaching 0.52.
Mots-clés Agrovoc : Hevea brasiliensis, génotype, clonage, sélection assistée par marqueurs, polymorphisme génétique, polymorphisme à nucléotide unique, génotypage
Mots-clés complémentaires : genomic prediction (GP), Sélection génomique
Mots-clés libres : Genomic prediction, Hevea brasiliensis, Genotyping by sequencing, Clonal breeding, Single nucleotide polymorphism
Classification Agris : F30 - Génétique et amélioration des plantes
Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques
Auteurs et affiliations
- Munyengwa Norman, University of Zimbabwe (ZWE)
- Le Guen Vincent, CIRAD-BIOS-UMR AGAP (FRA) - auteur correspondant
- Ngalle Bille Hermine, University of Yaounde 1 (CMR)
- Souza Livia Moura, UNICAMP (BRA)
- Clément-Demange André, CIRAD-BIOS-UMR AGAP (FRA)
- Mournet Pierre, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-8011-8647
- Masson Aurélien, SOGB (CIV)
- Soumahoro Mouman, SAPH (CIV)
- Kouassi Daouda, SOGB (CIV)
- Cros David, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-8601-7991
Source : Cirad-Agritrop (https://agritrop.cirad.fr/597472/)
[ Page générée et mise en cache le 2025-01-12 ]