Deneu Benjamin, Lorieul Titouan, Cole Elijah, Servajean Maximilien, Botella Christophe, Bonnet Pierre, Joly Alexis.
2020. Overview of LifeCLEF location-based species prediction task 2020 (GeoLifeCLEF).
In : Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum. Cappellato Linda (ed.), Eickhoff Carsten (ed.), Ferro Nicola (ed.), Névéol Aurélie (ed.)
|
Version publiée
- Anglais
Sous licence . paper_272.pdf Télécharger (2MB) | Prévisualisation |
Note générale : Le congrès s'est tenu en ligne
Résumé : Understanding the geographic distribution of species is a key concern in conservation. By pairing species occurrences with environmental features, researchers can model the relationship between an environment and the species which may be found there. To advance the stateof- the-art in this area, a large-scale machine learning competition called GeoLifeCLEF 2020 was organized. It relied on a dataset of 1.9 million species observations paired with high-resolution remote sensing imagery, land cover data, and altitude, in addition to traditional low-resolution climate and soil variables. This paper presents an overview of the competition, synthesizes the approaches used by the participating groups, and analyzes the main results. In particular, we highlight the ability of remote sensing imagery and convolutional neural networks to improve predictive performance, complementary to traditional approaches.
Mots-clés libres : Species distribution models, Evaluation, Model performance, Environmental data, Biodiversity
Auteurs et affiliations
- Deneu Benjamin, CIRAD-BIOS-UMR AMAP (FRA)
- Lorieul Titouan, INRIA (FRA)
- Cole Elijah, Caltech (USA)
- Servajean Maximilien, CNRS (FRA)
- Botella Christophe, CNRS (FRA)
- Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
- Joly Alexis, INRIA (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/598368/)
[ Page générée et mise en cache le 2022-06-17 ]