Agritrop
Accueil

Overview of LifeCLEF location-based species prediction task 2020 (GeoLifeCLEF)

Deneu Benjamin, Lorieul Titouan, Cole Elijah, Servajean Maximilien, Botella Christophe, Bonnet Pierre, Joly Alexis. 2020. Overview of LifeCLEF location-based species prediction task 2020 (GeoLifeCLEF). In : Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum. Cappellato Linda (ed.), Eickhoff Carsten (ed.), Ferro Nicola (ed.), Névéol Aurélie (ed.). Aachen : CEUR-WS, 13 p. (CEUR Workshop Proceedings, 2696) Conference and Labs of the Evaluation Forum (CLEF 2020), Thessaloniki, Grèce, 22 Septembre 2020/25 Septembre 2020.

Communication avec actes
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
paper_272.pdf

Télécharger (2MB) | Prévisualisation

Note générale : Le congrès s'est tenu en ligne

Résumé : Understanding the geographic distribution of species is a key concern in conservation. By pairing species occurrences with environmental features, researchers can model the relationship between an environment and the species which may be found there. To advance the stateof- the-art in this area, a large-scale machine learning competition called GeoLifeCLEF 2020 was organized. It relied on a dataset of 1.9 million species observations paired with high-resolution remote sensing imagery, land cover data, and altitude, in addition to traditional low-resolution climate and soil variables. This paper presents an overview of the competition, synthesizes the approaches used by the participating groups, and analyzes the main results. In particular, we highlight the ability of remote sensing imagery and convolutional neural networks to improve predictive performance, complementary to traditional approaches.

Mots-clés libres : Species distribution models, Evaluation, Model performance, Environmental data, Biodiversity

Auteurs et affiliations

  • Deneu Benjamin, CIRAD-BIOS-UMR AMAP (FRA)
  • Lorieul Titouan, INRIA (FRA)
  • Cole Elijah, Caltech (USA)
  • Servajean Maximilien, CNRS (FRA)
  • Botella Christophe, CNRS (FRA)
  • Bonnet Pierre, CIRAD-BIOS-UMR AMAP (FRA) ORCID: 0000-0002-2828-4389
  • Joly Alexis, INRIA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/598368/)

Voir la notice (accès réservé à la Dist) Voir la notice (accès réservé à la Dist)

[ Page générée et mise en cache le 2022-06-17 ]