Decoupes Rémy, Kafando Rodrique, Roche Mathieu, Teisseire Maguelonne.
2021. H-TFIDF: What makes areas specific over time in the massive flow of tweets related to the covid pandemic?.
In : Proceedings of the 24th AGILE Conference on Geographic Information Science, 2021 - Volume 2. Partsinevelos Panagiotis (ed.) , Kyriakidis Phaedon (ed.), Kavouras Marinos (ed.). Technical University of Crete, AGILE
|
Version publiée
- Anglais
Sous licence . agile-giss-2-2-2021.pdf Télécharger (4MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://www.kaggle.com/smid80/coronavirus-covid19-tweets-early-april / Url - autres données associées : https://github.com/echen102/COVID-19-TweetIDs/
Note générale : Le congrès s'est tenu en ligne
Résumé : Data produced by social networks may contain weak signals of possible epidemic outbreaks. In this paper, we focus on Twitter data during the waiting period before the appearance of COVID-19 first cases outside China. Among the huge flow of tweets that reflects a global growing concern in all countries, we propose to analyze such data with an adaptation of the TF-IDF measure. It allows the users to extract the discriminant vocabularies used across time and space. The results are then discussed to show how the specific spatio-temporal anchoring of the extracted terms make it possible to follow the crisis dynamics on different scales of time and space.
Mots-clés libres : Text Mining, Spatio-temporal analysis, Social network analysis, Tweets, One Health, COVID-19
Auteurs et affiliations
- Decoupes Rémy, INRAE (FRA)
- Kafando Rodrique, INRAE (FRA)
- Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
- Teisseire Maguelonne, INRAE (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/598482/)
[ Page générée et mise en cache le 2024-12-05 ]