Agritrop
Accueil

Investigating the impact of preprocessing on document embedding: an empirical comparison

Yahi Nourelhouda, Belhadef Hacene, Roche Mathieu. 2021. Investigating the impact of preprocessing on document embedding: an empirical comparison. International Journal of Data Mining, Modelling and Management, 13 (4) : 351-363.

Article de revue ; Article de recherche ; Article de revue à comité de lecture
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
Yahi_IJDMMM_2021.pdf

Télécharger (361kB) | Demander une copie

Résumé : Digital representation of text documents is a crucial task in machine learning and natural language processing (NLP). It aims to transform unstructured text documents into mathematically-computable elements. In recent years, several methods have been proposed and implemented to encode text documents into fixed-length feature vectors. This operation is known as document embedding and it has become an interesting and open area of research. Paragraph vector (Doc2vec) is one of the most used document embedding methods. It has gained a good reputation thanks to its good results. To overcome its limits, Doc2vec, was extended by proposing the document through corruption (Doc2vecC) technique. To get a deep view of these two methods, this work presents a study on the impact of morphosyntactic text preprocessing on these two document embedding methods. We have done this analysis by applying the most-used text preprocessing techniques, such as cleaning, stemming and lemmatisation, and their different combinations. The experimental analysis on the Microsoft Research Paraphrase dataset (MSRP), reveals that the preprocessing techniques serve to improve the classifier accuracy; and that the stemming method outperforms the other techniques.

Mots-clés Agrovoc : fouille de textes, traitement de l'information, fouille de données

Mots-clés complémentaires : traitement automatique des langues

Mots-clés libres : Natural language processing, Text Mining, Document embedding, Text preprocessing, Semantic similarity

Classification Agris : C30 - Documentation et information
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : CTS 7 (2019-) - Hors champs stratégiques

Auteurs et affiliations

  • Yahi Nourelhouda, Université Abdelhamid Mehri Constantine 2 (DZA) - auteur correspondant
  • Belhadef Hacene, Université Abdelhamid Mehri Constantine 2 (DZA)
  • Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568

Source : Cirad-Agritrop (https://agritrop.cirad.fr/599808/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-21 ]