Roche Mathieu, Teisseire Maguelonne.
2021. Integrating textual data into heterogeneous data ingestion processing.
In : 2021 IEEE International Conference on Big Data. IEEE
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Roche_et_al_BigData2021_P224.pdf Télécharger (14MB) | Demander une copie |
||
|
Version post-print
- Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad. Roche_Teisseire_BigData2021.pdf Télécharger (14MB) | Prévisualisation |
Résumé : In this abstract, two methods for integrating textual data and textual features into ingestion processing are summa- rized. The first method involves integrating all features, including textual features, into dedicated frameworks, such as by using ma- chine learning techniques. In the second method, text and textual features, such as keywords, are used to explain results returned by heterogeneous data mining. In this context, it is necessary to link data (e.g., databases, images, etc.) and/or obtained results with textual data (e.g., documents and keywords).
Mots-clés libres : Data mining, Text Mining, Natural language processing, Data integration, Image analysis
Auteurs et affiliations
- Roche Mathieu, CIRAD-ES-UMR TETIS (FRA) ORCID: 0000-0003-3272-8568
- Teisseire Maguelonne, INRAE (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/600139/)
[ Page générée et mise en cache le 2024-03-01 ]