Agritrop
Accueil

Combining genetic analysis and breeding for multipurpose sorghum: From the development of a “biomass phenotyping tool kit” to the development of dedicated breeding tools and schemes

Pot David, Trouche Gilles, Le Moigne Nicolas, Carrere Hélène, Luquet Delphine, Soccalingame Lata, Vilmus Ingrid, Roques Sandrine, Berger Angélique, Clement Anne, Soutiras Armelle, Jaffuel Sylvie, Verdeil Jean-Luc, Gatineau Frédéric, Bastianelli Denis, Bonnal Laurent, Vaksmann Michel, Rami Jean-François, Jeanson Patrice, Clamens Serge, Ventelon Debout Marjolaine, Alcouffe Joël, Chapus Marion, Fabre Françoise, Navard Patrick, Vo Loan T.T., Chupin Lucie, Thera Korothimi, Témé Niaba, Dufayard Jean François, Barrière Yves, Höfte Herman. 2015. Combining genetic analysis and breeding for multipurpose sorghum: From the development of a “biomass phenotyping tool kit” to the development of dedicated breeding tools and schemes. In : Genomics and Phenomics for Model-based Maize and Sorghum Breeding. Montpellier : EUCARPIA, 2 p. EUCARPIA Maize and Sorghum Conference. 23, Montpellier, France, 10 Juin 2015/11 Juin 2015.

Communication sans actes
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Sorghum_Biomass_Eucarpia_David_Pot_Final_compressed.pdf

Télécharger (5MB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Biomass_Sorghum_DP20150410.pdf

Télécharger (141kB) | Prévisualisation

Matériel d'accompagnement : 1 diaporama (21 vues)

Résumé : Sorghum is among the world's most important cereals in terms of human and animal nutrition. It is also currently identified as a promising crop to support the emerging bio-economy value chains that include energy production, biomaterials and molecules for food-feed and non-food-feed applications. In this context, the development of varieties adapted to the different end-uses is critical to provide the industries with relevant feedstock. Breeding sorghum for existing and emerging markets requires several steps, from the definition of “Industrial Ideotypes” down to the identification of “Molecular Ideotypes” in order to speed up the breeding process and optimize the genetic gains per unit of time. Firstly, expectations of the industrials in terms of composition and properties of the sorghum biomass for the different applications (“Industrial ideotypes”) have to be defined. Secondly, “Industrial ideotypes” have to be translated in “Biological ideotypes” which refers to the properties of the raw sorghum material in terms of composition and structure. Third, high-throughput phenotyping tools compatibles with genetic analyses and breeding constraints have to be developed. Fourth, strategies to disentangle the genetic determinism of the “Biological Ideotypes” have to be set up. And fifth, relevant breeding schemes able to provide new hybrids and relevant parents have to be initiated. We will illustrate this process through two examples related to the production of sorghum biocomposites and the optimization of sorghum biogas production. For both targets, we will show how, through the use of the sorghum genetic diversity, traits affecting the final product properties were identified. We will then illustrate the efforts that are currently developed to tackle the challenges linked to high-throughput phenotyping. We will finally show how these phenotyping tools are used on diverse association panels and multiparental designs to identify the genomic regions affecting the traits of interest and develop new hybrids and elite parents. Funding acknowledgement: This research is supported through the Biomass For the Future project (funded by ANR) and the BIOSORG project supported by the Agropolis (Labex Agro) and Cariplo foundations.

Mots-clés libres : Sorghum, Biomass value chains, Histology, Crop modelling, Biochemistry, Genetics, Breeding

Auteurs et affiliations

  • Pot David, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0001-6144-8448
  • Trouche Gilles, CIRAD-BIOS-UMR AGAP (FRA)
  • Le Moigne Nicolas, Ecole des mines de Paris (FRA)
  • Carrere Hélène, INRA (FRA)
  • Luquet Delphine, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-2543-7140
  • Soccalingame Lata, Ecole des mines d'Alès (FRA)
  • Vilmus Ingrid, CIRAD-BIOS-UMR AGAP (FRA)
  • Roques Sandrine, CIRAD-BIOS-UMR AGAP (FRA)
  • Berger Angélique, CIRAD-BIOS-UMR AGAP (FRA)
  • Clement Anne, CIRAD-BIOS-UMR AGAP (FRA)
  • Soutiras Armelle, CIRAD-BIOS-UMR AGAP (FRA)
  • Jaffuel Sylvie, CIRAD-BIOS-UMR AGAP (FRA)
  • Verdeil Jean-Luc, CIRAD-BIOS-UMR AGAP (FRA)
  • Gatineau Frédéric, CIRAD-BIOS-UMR AGAP (FRA)
  • Bastianelli Denis, CIRAD-ES-UMR SELMET (FRA) ORCID: 0000-0002-6394-5920
  • Bonnal Laurent, CIRAD-ES-UMR SELMET (FRA) ORCID: 0000-0001-5038-7432
  • Vaksmann Michel, CIRAD-BIOS-UMR AGAP (MLI) ORCID: 0000-0002-5258-1279
  • Rami Jean-François, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-5679-3877
  • Jeanson Patrice, Euralis Génétique (FRA)
  • Clamens Serge, Euralis Génétique (FRA)
  • Ventelon Debout Marjolaine, Euralis Génétique (FRA)
  • Alcouffe Joël, RAGT2N (FRA)
  • Chapus Marion, RAGT2N (FRA)
  • Fabre Françoise, RAGT2N (FRA)
  • Navard Patrick, Ecole des mines de Paris (FRA)
  • Vo Loan T.T., CEMEF (FRA)
  • Chupin Lucie, CEMEF (FRA)
  • Thera Korothimi, IER (MLI)
  • Témé Niaba, IER (MLI)
  • Dufayard Jean François, CIRAD-BIOS-UMR AGAP (FRA)
  • Barrière Yves, INRA (FRA)
  • Höfte Herman, INRA (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/600169/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-15 ]