Agritrop
Accueil

A distribution model for Glossina brevipalpis and Glossina austeni in Southern Mozambique, Eswatini and South Africa for enhanced area-wide integrated pest management approaches

de Beer Chantel J., Dicko Ahmadou Hamady, Ntshangase Jerome, Moyaba Percy, Taioe Moeti O., Mulandane Fernando C., Neves Luis, Mdluli Sihle, Guerrini Laure, Bouyer Jérémy, Vreysen Marc J.B., Venter Gert J.. 2021. A distribution model for Glossina brevipalpis and Glossina austeni in Southern Mozambique, Eswatini and South Africa for enhanced area-wide integrated pest management approaches. PLoS Neglected Tropical Diseases, 15 (11):e0009989, 19 p.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
journal.pntd.0009989.pdf

Télécharger (2MB) | Prévisualisation

Url - jeu de données - Entrepôt autre : https://doi.org/10.7910/DVN/PA7U7L

Quartile : Q1, Sujet : PARASITOLOGY / Quartile : Q1, Sujet : TROPICAL MEDICINE

Résumé : Background: Glossina austeni and Glossina brevipalpis (Diptera: Glossinidae) are the sole cyclical vectors of African trypanosomes in South Africa, Eswatini and southern Mozambique. These populations represent the southernmost distribution of tsetse flies on the African continent. Accurate knowledge of infested areas is a prerequisite to develop and implement efficient and cost-effective control strategies, and distribution models may reduce large-scale, extensive entomological surveys that are time consuming and expensive. The objective was to develop a MaxEnt species distribution model and habitat suitability maps for the southern tsetse belt of South Africa, Eswatini and southern Mozambique. Methodology/Principal findings: The present study used existing entomological survey data of G. austeni and G. brevipalpis to develop a MaxEnt species distribution model and habitat suitability maps. Distribution models and a checkerboard analysis indicated an overlapping presence of the two species and the most suitable habitat for both species were protected areas and the coastal strip in KwaZulu-Natal Province, South Africa and Maputo Province, Mozambique. The predicted presence extents, to a small degree, into communal farming areas adjacent to the protected areas and coastline, especially in the Matutuíne District of Mozambique. The quality of the MaxEnt model was assessed using an independent data set and indicated good performance with high predictive power (AUC > 0.80 for both species). Conclusions/Significance: The models indicated that cattle density, land surface temperature and protected areas, in relation with vegetation are the main factors contributing to the distribution of the two tsetse species in the area. Changes in the climate, agricultural practices and land-use have had a significant and rapid impact on tsetse abundance in the area. The model predicted low habitat suitability in the Gaza and Inhambane Provinces of Mozambique, i.e., the area north of the Matutuíne District. This might indicate that the southern tsetse population is isolated from the main tsetse belt in the north of Mozambique. The updated distribution models will be useful for planning tsetse and trypanosomosis interventions in the area.

Mots-clés Agrovoc : Glossina austeni, vecteur de maladie, transmission des maladies, organisme nuisible aux animaux, lutte intégrée antimaladie

Mots-clés géographiques Agrovoc : Mozambique, Afrique du Sud

Mots-clés complémentaires : Glossina brevipalpis

Mots-clés libres : Glossina, Mozambique, South Africa, Tsetse fly, Trypanosoma, Agriculture, Cattle, Surface temperature

Classification Agris : L72 - Organismes nuisibles des animaux
L74 - Troubles divers des animaux
L70 - Sciences et hygiène vétérinaires - Considérations générales

Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes

Auteurs et affiliations

  • de Beer Chantel J., FAO (AUT) - auteur correspondant
  • Dicko Ahmadou Hamady, Stats4SD (SEN)
  • Ntshangase Jerome, ARC (ZAF)
  • Moyaba Percy, ARC (ZAF)
  • Taioe Moeti O., ARC (ZAF)
  • Mulandane Fernando C., Eduardo Mondlane University (MOZ)
  • Neves Luis, Eduardo Mondlane University (MOZ)
  • Mdluli Sihle, Epidemiology Unit (EST)
  • Guerrini Laure, CIRAD-BIOS-UMR ASTRE (FRA)
  • Bouyer Jérémy, CIRAD-BIOS-UMR ASTRE (REU) ORCID: 0000-0002-1913-416X
  • Vreysen Marc J.B., FAO (AUT)
  • Venter Gert J., ARC (ZAF)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/600446/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-24 ]