Ezanno Pauline, Picault Sébastien, Bareille Servane, Beaunée Gaël, Boender Gert Jan, Dankwa Emmanuelle A., Deslandes François, Donnelly Christl A., Hagenaars Thomas J., Hayes Sarah, Jori Ferran, Lambert Sébastien, Mancini Matthieu, Munoz Facundo, Pleydell David R.J., Thompson Robin N., Vergu Elisabeta, Vignes Matthieu, Vergne Timothée. 2022. The African swine fever modelling challenge: Model comparison and lessons learnt. Epidemics, 40:100615, 14 p.
|
Version publiée
- Anglais
Sous licence . Ezanno et al. - 2022 - The African swine fever modelling challenge Model.pdf Télécharger (4MB) | Prévisualisation |
Résumé : Robust epidemiological knowledge and predictive modelling tools are needed to address challenging objectives, such as: understanding epidemic drivers; forecasting epidemics; and prioritising control measures. Often, mul- tiple modelling approaches can be used during an epidemic to support effective decision making in a timely manner. Modelling challenges contribute to understanding the pros and cons of different approaches and to fostering technical dialogue between modellers. In this paper, we present the results of the first modelling challenge in animal health – the ASF Challenge – which focused on a synthetic epidemic of African swine fever (ASF) on an island. The modelling approaches proposed by five independent international teams were compared. We assessed their ability to predict temporal and spatial epidemic expansion at the interface between domestic pigs and wild boar, and to prioritise a limited number of alternative interventions. We also compared their qualitative and quantitative spatio-temporal predictions over the first two one-month projection phases of the challenge. Top-performing models in predicting the ASF epidemic differed according to the challenge phase, host species, and in predicting spatial or temporal dynamics. Ensemble models built using all team-predictions out- performed any individual model in at least one phase. The ASF Challenge demonstrated that accounting for the interface between livestock and wildlife is key to increasing our effectiveness in controlling emerging animal diseases, and contributed to improving the readiness of the scientific community to face future ASF epidemics. Finally, we discuss the lessons learnt from model comparison to guide decision making.
Mots-clés Agrovoc : peste porcine africaine, virus peste porcine africaine, modélisation, surveillance épidémiologique, épidémiologie, sanglier, Sus scrofa
Mots-clés libres : African swine fever, Modelling
Classification Agris : L73 - Maladies des animaux
U10 - Informatique, mathématiques et statistiques
Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes
Agences de financement hors UE : Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
Auteurs et affiliations
- Ezanno Pauline, INRAE (FRA)
- Picault Sébastien, INRAE (FRA)
- Bareille Servane, INRAE (FRA)
- Beaunée Gaël, INRAE (FRA)
- Boender Gert Jan, Wageningen Bioveterinary Research (NLD)
- Dankwa Emmanuelle A., University of Oxford (GBR)
- Deslandes François, INRAE (FRA)
- Donnelly Christl A., University of Oxford (GBR)
- Hagenaars Thomas J., Wageningen Bioveterinary Research (NLD)
- Hayes Sarah, Imperial College London (GBR)
- Jori Ferran, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0001-5451-7767
- Lambert Sébastien, University of London (GBR)
- Mancini Matthieu, INRAE (FRA)
- Munoz Facundo, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0002-5061-4241
- Pleydell David R.J., INRAE (FRA)
- Thompson Robin N., University of Warwick (GBR)
- Vergu Elisabeta, INRAE (FRA)
- Vignes Matthieu, Massey University (NZL)
- Vergne Timothée, ENVT (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/601787/)
[ Page générée et mise en cache le 2024-12-04 ]