Gibaud Julien, Bry Xavier, Trottier Catherine, Mortier Frédéric, Rejou-Mechain Maxime. 2022. Response mixture models based on supervised components: Clustering floristic taxa. Statistical Modelling, 19 p.
Version Online first
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. Gibaud2022.pdf Télécharger (7MB) | Demander une copie |
Résumé : In this article, we propose to cluster responses in order to identify groups predicted by specific explanatory components. A response matrix is assumed to depend on a set of explanatory variables and a set of additional covariates. Explanatory variables are supposed many and redundant, which implies some dimension reduction and regularization. By contrast, additional covariates contain few selected variables which are forced into the regression model, as they demand no regularization. The response matrix is assumed partitioned into several unknown groups of responses. We suppose that the responses in each group are predictable from an appropriate number of specific orthogonal supervised components of explanatory variables. The classification is based on a mixture model of the responses. To estimate the model, we propose a criterion extending that of Supervised Component-based Generalized Linear Regression, a Partial Least Squares-type method, and develop an algorithm combining component-based model and Expectation Maximization estimation. This new methodology is tested on simulated data and then applied to a floristic ecology dataset.
Mots-clés Agrovoc : taxonomie, modélisation
Mots-clés libres : EM algorithm, Response mixture, SCGLR, Supervised components, Taxa classification
Classification Agris : F70 - Taxonomie végétale et phytogéographie
U10 - Informatique, mathématiques et statistiques
Champ stratégique Cirad : CTS 1 (2019-) - Biodiversité
Auteurs et affiliations
- Gibaud Julien, Université de Montpellier (FRA) - auteur correspondant
- Bry Xavier, UM2 (FRA)
- Trottier Catherine, UM2 (FRA)
- Mortier Frédéric, CIRAD-ES-UPR Forêts et sociétés (FRA)
- Rejou-Mechain Maxime, IRD (FRA)
Source : Cirad-Agritrop (https://agritrop.cirad.fr/601939/)
[ Page générée et mise en cache le 2024-11-30 ]