Pissarra Joana, Dorkeld Franck, Loire Etienne, Bonhomme Vincent, Sereno Denis, Lemesre Jean-Loup, Holzmuller Philippe. 2022. SILVI, an open-source pipeline for T-cell epitope selection. PloS One, 17 (9):e0273494, 20 p.
|
Version publiée
- Anglais
Sous licence . journal.pone.0273494.pdf Télécharger (1MB) | Prévisualisation |
Url - jeu de données - Entrepôt autre : https://doi.org/10.5281/zenodo.6865909
Liste HCERES des revues (en SHS) : oui
Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie; Staps
Résumé : High-throughput screening of available genomic data and identification of potential antigenic candidates have promoted the development of epitope-based vaccines and therapeutics. Several immunoinformatic tools are available to predict potential epitopes and other immunogenicity-related features, yet it is still challenging and time-consuming to compare and integrate results from different algorithms. We developed the R script SILVI (short for: from in silico to in vivo), to assist in the selection of the potentially most immunogenic T-cell epitopes from Human Leukocyte Antigen (HLA)-binding prediction data. SILVI merges and compares data from available HLA-binding prediction servers, and integrates additional relevant information of predicted epitopes, namely BLASTp alignments with host proteins and physical-chemical properties. The two default criteria applied by SILVI and additional filtering allow the fast selection of the most conserved, promiscuous, strong binding T-cell epitopes. Users may adapt the script at their discretion as it is written in open-source R language. To demonstrate the workflow and present selection options, SILVI was used to integrate HLA-binding prediction results of three example proteins, from viral, bacterial and parasitic microorganisms, containing validated epitopes included in the Immune Epitope Database (IEDB), plus the Human Papillomavirus (HPV) proteome. Applying different filters on predicted IC50, hydrophobicity and mismatches with host proteins allows to significantly reduce the epitope lists with favourable sensitivity and specificity to select immunogenic epitopes. We contemplate SILVI will assist T-cell epitope selections and can be continuously refined in a community-driven manner, helping the improvement and design of peptide-based vaccines or immunotherapies.
Mots-clés libres : Epitope selection, HLA binding, Antigen, Immune Epitope Database, Immunomodulation, Pathogen
Classification Agris : S50 - Santé humaine
Champ stratégique Cirad : CTS 4 (2019-) - Santé des plantes, des animaux et des écosystèmes
Auteurs et affiliations
- Pissarra Joana, IRD (FRA) - auteur correspondant
- Dorkeld Franck, INRAE (FRA)
- Loire Etienne, CIRAD-BIOS-UMR ASTRE (VNM)
- Bonhomme Vincent, ISEM (FRA)
- Sereno Denis, IRD (FRA)
- Lemesre Jean-Loup, IRD (FRA)
- Holzmuller Philippe, CIRAD-BIOS-UMR ASTRE (FRA) ORCID: 0000-0002-8919-9081
Source : Cirad-Agritrop (https://agritrop.cirad.fr/602078/)
[ Page générée et mise en cache le 2024-12-21 ]