Agritrop
Accueil

Mulch application as the overarching factor explaining increase in soil organic carbon stocks under conservation agriculture in two 8-year-old experiments in Zimbabwe

Shumba Armwell, Chikowo Régis, Thierfelder Christian, Corbeels Marc, Six Johan, Cardinael Rémi. 2024. Mulch application as the overarching factor explaining increase in soil organic carbon stocks under conservation agriculture in two 8-year-old experiments in Zimbabwe. Soil, 1 : 151-165.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact Revue en libre accès total
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
Shumba2024 Mulch application as the overarching factor.pdf

Télécharger (3MB) | Prévisualisation

Url - jeu de données - Dataverse Cirad : https://doi.org/10.18167/DVN1/VPOCHN

Résumé : Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our understanding of the impact of CA and its respective three principles on top- and subsoil organic carbon stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. This study was conducted at two long-term experimental sites established in Zimbabwe in 2013. The soil types were abruptic Lixisols at Domboshava Training Centre (DTC) and xanthic Ferralsol at the University of Zimbabwe farm (UZF). The following six treatments, which were replicated four times, were investigated: conventional tillage (CT), conventional tillage with rotation (CTR), no tillage (NT), no tillage with mulch (NTM), no tillage with rotation (NTR), and no tillage with mulch and rotation (NTMR). Maize (Zea mays L.) was the main crop, and treatments with rotation included cowpea (Vigna unguiculata L. Walp.). The soil organic carbon (SOC) concentration and soil bulk density were determined for samples taken from depths of 0–5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–75 and 75–100 cm. Cumulative organic inputs to the soil were also estimated for all treatments. SOC stocks at equivalent soil mass were significantly (p<0.05) higher in the NTM, NTR and NTMR treatments compared with the NT and CT treatments in the top 5 cm and top 10 cm layers at UZF, while SOC stocks were only significantly higher in the NTM and NTMR treatments compared with the NT and CT treatments in the top 5 cm at DTC. NT alone had a slightly negative impact on the top SOC stocks. Cumulative SOC stocks were not significantly different between treatments when considering the whole 100 cm soil profile. Our results show the overarching role of crop residue mulching in CA cropping systems with respect to enhancing SOC stocks but also that this effect is limited to the topsoil. The highest cumulative organic carbon inputs to the soil were observed in NTM treatments at the two sites, and this could probably explain the positive effect on SOC stocks. Moreover, our results show that the combination of at least two CA principles including mulch is required to increase SOC stocks in these low-nitrogen-input cropping systems.

Mots-clés Agrovoc : conservation des sols, séquestration du carbone, Lixisol, non-travail du sol, carbone, fertilisation, rotation culturale, paillage, système de culture, stockage, matière organique du sol, Zea mays, Vigna unguiculata

Mots-clés géographiques Agrovoc : Zimbabwe

Mots-clés libres : Soil organic carbon, Conservation agriculture, Sub Saharan Africa, Deep soil organic carbon stocks

Classification Agris : P33 - Chimie et physique du sol
F08 - Systèmes et modes de culture

Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques

Agences de financement hors UE : Agropolis Fondation, Agence Nationale de la Recherche, Total Foundation

Projets sur financement : (FRA) Agricultural Intensification and Dynamics of Soil Carbon Sequestration in Tropical and Temperate Farming Systems, (FRA) Agricultural Sciences for sustainable Development

Auteurs et affiliations

  • Shumba Armwell, University of Zimbabwe (ZWE) - auteur correspondant
  • Chikowo Régis, University of Zimbabwe (ZWE)
  • Thierfelder Christian, CIMMYT (ZWE)
  • Corbeels Marc, CIRAD-PERSYST-UPR AIDA (KEN) ORCID: 0000-0002-8084-9287
  • Six Johan, ETH (CHE)
  • Cardinael Rémi, CIRAD-PERSYST-UPR AIDA (ZWE) ORCID: 0000-0002-9924-3269

Source : Cirad-Agritrop (https://agritrop.cirad.fr/608508/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-12-18 ]