Agritrop
Accueil

Storing additional carbon in soil: different practices, different stabilities of the organic matter?

Chenu Claire, Kpemoua Israel, Cardinael Rémi, Houot Sabine, Baudin François, Chevallier Tiphaine, Barré Pierre. 2024. Storing additional carbon in soil: different practices, different stabilities of the organic matter?. In : Centennial Celebration and Congress of the International Union of Soil Sciences, Florence - Italy May 19 - 21, 2024 - Abstract Book. SISS. Florence : SISS, Résumé, 1 p. Centennial Celebration and Congress of the International Union of Soil Sciences (IUSS 2024), Florence, Italie, 19 Mai 2024/21 Mai 2024.

Communication avec actes
[img]
Prévisualisation
Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
609525.pdf

Télécharger (1MB) | Prévisualisation

Résumé : A diversity of agricultural practices and systems enable the accrual of soil organic C (SOC) stocks, with variable efficiencies. These C-storing practices increase SOC stocks, either by increasing the inputs of plant biomass or exogenous organic matter, or by decreasing the outputs of SOC reducing SOC mineralisation rates, or both. In the perspective of contributing to climate change mitigation, the temporal stability of the additional SOC stored is critical. Different approaches can be used to assess the stability of soil organic matter, such as physical fractionation of soil organic matter, chemical extractions, long term incubations and analysis of the thermal behaviour of the organic matter using Rock-Eval© analysis. These address contrasting residence times, such as of months to years (long term incubations), to several decades and centuries (particle size fractionation, Rock-Eval© analysis coupled with PARTYSOC model) We used the literature and long-term agricultural experiments in which management options (application of exogenous organic matter, conservation agriculture, organic agriculture, agroforestry) result in increased SOC stocks. We investigated the stability of the additional SOC stored, compared to the reference management option. Methods currently used in the literature to assess the temporal stability of soil organic matter do not address the same SOC kinetic pools. Care must be taken to specify which range of residence times is considered when using any method intending to evaluate the biogeochemical stability of soil organic matter, as well as when using the terms stable or labile. Management options result in slightly contrasted stability of the additional organic carbon, the application of exogenous organic matter resulting in the most stable additional carbon, compared to management options that increase belowground plant biomass inputs to soil. Carbon storing agricultural management options mobilize different stabilization processes of soil organic matter: chemical recalcitrance, organo-mineral interactions and physical protection.

Auteurs et affiliations

  • Chenu Claire, INRAE (FRA)
  • Kpemoua Israel, INRAE (FRA)
  • Cardinael Rémi, CIRAD-PERSYST-UPR AIDA (ZWE) ORCID: 0000-0002-9924-3269
  • Houot Sabine, INRAE (FRA)
  • Baudin François, Sorbonne université (FRA)
  • Chevallier Tiphaine, IRD (FRA)
  • Barré Pierre, CNRS (FRA)

Source : Cirad-Agritrop (https://agritrop.cirad.fr/609525/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-05-29 ]